Learn More
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land(More)
Despite their monophyletic origin, mitochondrial (mt) genomes of plants and animals have developed contrasted evolutionary paths over time. Animal mt genomes are generally small, compact, and exhibit high mutation rates, whereas plant mt genomes exhibit low mutation rates, little compactness, larger sizes, and highly rearranged structures. We present the(More)
Total transfer RNAs were extracted from highly purified potato mitochondria. From quantitative measurements, the in vivo tRNA concentration in mitochondria was estimated to be in the range of 60 microM. Total potato mitochondrial tRNAs were fractionated by two-dimensional polyacrylamide gel electrophoresis. Thirty one individual tRNAs, which could read all(More)
In Chlamydomonas reinhardtii, 259 tRNA genes were identified and classified into 49 tRNA isoaccepting families. By constructing phylogenetic trees, we determined the evolutionary history for each tRNA gene family. The majority of the tRNA sequences are more closely related to their plant counterparts than to animals ones. Northern experiments also permitted(More)
Prasinoviruses are among the largest viruses (>200 kb) and encode several hundreds of protein coding genes, including most genes of the DNA replication machinery and several genes involved in transcription and translation, as well as transfer RNAs (tRNAs). They can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting global(More)
Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant(More)
Editing is a general event in plant mitochondrial messenger RNAs, but has never been detected in a plant mitochondrial transfer RNA (tRNA). We demonstrate here the occurrence of a tRNA editing event in higher plant mitochondria: in both bean and potato, the C encoded at position 4 in the mitochondrial tRNA(Phe)(GAA) gene is converted into a U in the mature(More)
Larch mitochondria contain a'native'tRNAHis which is absent from angiosperms. Sequence comparisons of genomic DNA and cDNA obtained from unprocessed primary transcripts of the larch mitochondrial gene trnH encoding this tRNA revealed three nucleotide discrepancies. These three nucleotide alterations, in the acceptor stem, D stem and anticodon stem(More)
Editing in plant mitochondria consists in C to U changes and mainly affects messenger RNAs, thus providing the correct genetic information for the biosynthesis of mitochondrial (mt) proteins. But editing can also affect some of the plant mt tRNAs encoded by the mt genome. In dicots, a C to U editing event corrects a C:A mismatch into a U:A base-pair in the(More)
PlantRNA database (http://plantrna.ibmp.cnrs.fr/) compiles transfer RNA (tRNA) gene sequences retrieved from fully annotated plant nuclear, plastidial and mitochondrial genomes. The set of annotated tRNA gene sequences has been manually curated for maximum quality and confidence. The novelty of this database resides in the inclusion of biological(More)