Learn More
OBJECTIVE CD34 is a sialomucin often expressed by cells with hemangiopoietic potential and widely serves as a surrogate marker of stem cell potential. Mesenchymal stromal cells (MSCs) also express CD34, although the functional significance of its expression remains undefined. In this study, we determined whether CD34(pos) MSCs are functionally distinct from(More)
Dividing cells expressing the Herpes simplex type 1 thymidine kinase (TK) can be killed upon ganciclovir treatment. Likewise, conditional cell knock-out can be obtained in transgenic mice expressing a TK gene placed under the control of tissue-specific regulatory sequences. Such animals provide powerful experimental systems for assessing the functional role(More)
It has been suggested that marrow stromal cells (MSCs) may be immunoprivileged and can engraft in allogeneic recipients with intact immune systems. We determined if the implantation of murine MSCs engineered to release erythropoietin (Epo) would be feasible in major histocompatibility complex (MHC)-mismatched allogeneic mice without immunosuppression, and(More)
Marrow stromal cells (MSCs) can be easily gene-modified and clonally expanded making them ideal candidates for transgenic cell therapy. However, recent reports suggest that MSCs possess immunosuppressive effects, which may limit their clinical applications. We investigated whether interleukin (IL)-2 gene-modified MSCs can be used to mount an effective(More)
Bone marrow stromal cells (MSCs) are pluripotent cells capable of differentiation into several tissue types. This present study was performed to determine their functional neoangiogenic potential in vivo. Whole bone marrow was harvested from C57Bl/6 mice, and the adherent cellular fraction was culture expanded for 14 doublings. These MSCs were resuspended(More)
The ease of isolation and ex vivo culture of marrow-derived stromal cells (MSCs) from adult bone marrow renders them a very promising source of adult stem cells for gene transfer and cell therapy. However, little is known about the signaling pathways that control their in vivo mobilization and subsequent biodistribution. Platelet-derived(More)
Proteolytic processing of human plasminogen generates potent antiangiogenic peptides such as angiostatin. The plasminogen kringle 5 (K5) domain, which is distinct from angiostatin, possesses potent antiangiogenic properties on its own, which can be exploited in cancer therapy. It has been recently observed that antiangiogenic agents promote leukocyte-vessel(More)
The CD4 gene follows a complex and highly regulated pattern of expression throughout T cell development. This expression is governed by different regulatory elements that have been partly identified, including a promoter, a proximal enhancer, and a silencer. Here we show that a CD4 minigene comprising a combination of these elements is specifically(More)
We hypothesized that a granulocyte macrophage colony-stimulating factor (GMCSF) and interleukin 15 (IL-15) fusokine (GIFT15) would possess greater immune-stimulatory properties than their combined use. Unexpectedly, tumor cells engineered to secrete GIFT15 protein led to suppression of natural killer (NK) and NKT-cell recruitment in vivo, suggesting an(More)
Bone marrow stromal cells (MSCs) can be exploited therapeutically in transgenic cell therapy approaches. Our aim was to determine if gene-modified MSCs sequestered within a clinically approved, bovine type I collagen-based viscous bulking material could serve as a retrievable implant for systemic delivery of erythropoietin (Epo). To test this hypothesis, we(More)