Laurence Leherte

Learn More
The µ opioid receptor (µOR), the principal target to control pain, belongs to the G protein-coupled receptors (GPCRs) family, one of the most highlighted protein families due to their importance as therapeutic targets. The conformational flexibility of GPCRs is one of their essential characteristics as they take part in ligand recognition and subsequent(More)
Methods to assist in the spatial and visual analysis of electron-density maps have been investigated as part of a project in molecular scene analysis [Fortier, Castleden, Glasgow, Conklin, Walmsley, Leherte & Allen (1993). Acta Cryst. D49, 168-178]. In particular, the usefulness of the topological approach for the segmentation of medium-resolution (3 A)(More)
The search of molecular structures inside a large database of chemical compounds is a critical step for many computer programs used in several domains of chemistry. During the last years, the size of many chemical databases has dramatically increased, hence in the meantime, search engines needed to be more and more powerful. The speed and the efficiency of(More)
A fundamental goal of research in molecular biology is to understand protein structure. Protein crystallography is currently the most successful method for determining the threedimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an expert's ability to derive and evaluate a protein scene model. In this paper, the problem(More)
A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids(More)
A reduced point charge model was developed in a previous work from the study of extrema in smoothed charge density distribution functions generated from the Amber99 molecular electrostatic potential. In the present work, such a point charge distribution is coupled with the Amber99 force field and implemented in the program TINKER to allow molecular dynamics(More)
A knowledge-based approach to crystal structure determination is presented. The approach integrates direct-methods and artificial-intelligence strategies to rephrase the structure determination process as an exercise in scene analysis. A general joint probability distribution framework, which allows the incorporation of isomorphous replacement, anomalous(More)
The [3]rotaxane synthesised as a single isomer constituted of two cyclodextrins (CDs) and an azobenzene chain [M.R. Craig, T.D.W. Claridge, M.G. Hutchings, H.L. Anderson, Synthesis of a cyclodextrin azo dye [3]rotaxane as a single isomer, Chem. Commun. 16 (1999) 1537-1538] has been investigated using molecular mechanics (MM) and dynamics (MD) with the MM3(More)
In this paper, we propose a reduced representation of molecules of pharmacological interest based on their chemical functions. The proposed representations of the molecules are obtained by a topological analysis of their electron density maps at medium resolution, leading to graphs of critical points. The distribution of the different types of critical(More)