Learn More
Generalized non-convulsive absence seizures are characterized by the occurrence of synchronous and bilateral spike and wave discharges (SWDs) on the electroencephalogram, that are concomitant with a behavioral arrest. Many similarities between rodent and human absence seizures support the use of genetic rodent models, in which spontaneous SWDs occur. This(More)
In vitro and in vivo electrophysiological studies were done to investigate the neuronal function of the hippocampus and prefrontal cortex in the amyloid precursor protein (APP) 23 transgenic mouse model for amyloidosis developed by Sturchler-Pierrat et al. [Proc Natl Acad Sci USA 94 (1997) 13287]. Brain slices were taken from 3, 6, 9, 12, 18 and 24 month(More)
Pharmacological data have shown that the cholinergic transmission participates in the control of spike-and-wave discharges in rats with genetic absence epilepsy. The corticothalamic circuitry which generates spontaneous spike-and-wave discharges, the electroencephalographic expression of absence seizures, receives important cholinergic inputs from two(More)
Wistar rats of a selected strain show spontaneous generalized non-convulsive seizures with bilateral synchronous spike-wave discharges on the cortical electroencephalograph (EEG). The 7 to 9 c/s spike-wave discharges occur predominantly in waking states of inactivity. The effects of cholinergic drugs on the cumulated duration of spike-wave discharges were(More)
In the selected strain of GAERS Wistar rats (Genétic Absence Epilepsy Rats from Strasbourg), all animals present spontaneously recurrent absence seizures characterized by bilateral and synchronous generalized spike-and-wave discharges (SWD) accompanied by behavioural arrest. SWD depend on a thalamo-cortical network connecting the reticular and relay nuclei(More)
Electrophysiological and staining techniques in the in vitro slice preparation of the rat and guinea-pig lateral amygdala were combined with immunocytochemical approaches, in order to characterize the neuronal substrate, the ionic basis and the pharmacological properties of glycine-mediated responses, and to map the distribution and composition of the(More)
Some aspects of the GABA and cholinergic systems have been investigated in the cortex and thalamus of GAERS Wistar rats, a model of petit-mal epilepsy, and in a non-epileptic control strain. GABA and its synthetic enzyme, glutamic acid decarboxylase (GAD), were located by immunocytochemistry; the GABAA receptors were evaluated by autoradiography of(More)
A slow inhibitory potential (sIP) elicited upon synaptic activation in spiny, pyramidal-like cells with properties indicative of projection neurons was investigated in slices of the rat and guinea-pig lateral amygdala in vitro. The sIP succeeded the triphasic sequence of excitatory and fast/slow inhibitory postsynaptic potentials mediated via glutamate and(More)
Audiogenic seizures, a model of brainstem epilepsy, are characterized by a tonic phase (sustained muscular contraction fixing the limbs in a flexed or extended position) associated with a short cortical electroencephalogram flattening. When sound-susceptible rats are exposed to repeated acoustic stimulations, kindled audiogenic seizures, characterized by a(More)
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) type glutamate receptors are critical for synaptic plasticity and induction of long-term potentiation (LTP), considered as one of the synaptic mechanisms underlying learning and memory. Positive allosteric modulators of AMPA receptors could provide a therapeutic approach to the treatment of(More)