Laurence Chèze

Learn More
Body segment inertial parameters (BSIPs) are important data in biomechanics. They are usually estimated from predictive equations reported in the literature. However, most of the predictive equations are ambiguously applicable in the conventional 3D segment coordinate systems (SCSs). Also, the predictive equations reported in the literature all include two(More)
When video-based motion analysis systems are used to measure segmental kinematics, the major source of error is the displacement of skin-fixed markers relative to the underlying skeletal structure. Such displacements cause the marker representation of the segment to deform, thereby decreasing the accuracy of subsequent three-dimensional kinematic(More)
The purpose of this study was to compare the main kinematic, kinetic, and dynamic parameters of elite and well-trained sprinters during the starting block phase and the 2 subsequent steps. Six elite sprinters (10.06-10.43 s/100 m) and 6 well-trained sprinters (11.01-11.80 s/100 m) equipped with 63 passive reflective markers performed 4 maximal 10 m sprint(More)
The mechanical responses (i.e. external contact forces and external power) of 25 elite rowers to a race-pace rowing protocol were investigated on the traditional fixed stretcher mechanism and the more recently introduced free-floating stretcher mechanism rowing ergometers. Using a Rowperfect rowing ergometer for both conditions, external contact forces at(More)
BACKGROUND The International Society of Biomechanics has proposed a standardization recommendation for motion recordings of the upper extremity defining the set of bony landmarks, local coordinate systems and joint coordinate systems. The aim of our study was to verify the clinical interpretation of the proposed rotation sequence for the glenohumeral joint(More)
The aim of this study was to test three different rotation sequences (YXY, ZXY, and XZY) on the shoulder kinematics (rotations of the humerus relative to the thorax) during an original movement such as the tennis flat serve (FS). Nine elite male and female players performed a minimum of five flat serves. An optoelectronic motion analysis system was used to(More)
In order to obtain the lower limb kinematics from skin-based markers, the soft tissue artefact (STA) has to be compensated. Global optimization (GO) methods rely on a predefined kinematic model and attempt to limit STA by minimizing the differences between model predicted and skin-based marker positions. Thus, the reliability of GO methods depends directly(More)
In human movement analysis, accuracy and robustness of the algorithms used to determine the location of centres of rotation from stereophotogrametric data depend mainly on their capacity to deal with the artefacts due to soft tissue deformation (STA). While evaluating these algorithms using a mathematical simulation approach, effectual realizations of STAs(More)
While reconstructing skeletal movement using stereophotogrammetry, the relative movement between a skin marker and the underlying bone is regarded as an artefact (soft tissue artefact: STA). Similarly, the consequent pose, size and shape variations that affect a cluster of markers associated with a bony segment, or any arbitrary change of configuration in(More)
The question of using the nonorthogonal joint coordinate system (JCS) to report joint moments has risen in the literature. However, the expression of joint moments in a nonorthogonal system is still confusing. The purpose of this paper is to present a method to express any 3D vector in a nonorthogonal coordinate system. The interpretation of these(More)