Lauren S. Fink

Learn More
Faithful repair of damaged DNA is a crucial process in maintaining cell viability and function. A multitude of factors and pathways guides this process and includes repair proteins and cell cycle checkpoint factors. Differences in the maintenance of genomic processes are one feature that may contribute to species-specific differences in lifespan. We(More)
Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an "autophosphorylation(More)
Triple-negative breast cancers (TNBC), negative for estrogen receptor, progesterone receptor, and ERBB2 amplification, are resistant to standard targeted therapies and exhibit a poor prognosis. Furthermore, they are highly heterogeneous with respect to genomic alterations, and common therapeutic targets are lacking though substantial evidence implicates(More)
Small-molecule BET bromodomain inhibitors (BETis) are actively being pursued in clinical trials for the treatment of a variety of cancers, but the mechanisms of resistance to BETis remain poorly understood. Using a mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted(More)
Persistent infection by hepatitis B virus (HBV) correlates with the prevalence of hepatocellular carcinoma. It has recently been demonstrated that the complete viral genome very efficiently transforms the immortalized murine hepatocyte line FMH202 in vitro. Here it is shown that the viral transactivating protein X (HBx) is sufficient to transform FMH202(More)
Cellular senescence is a state of stable cell growth arrest. Activation of oncogenes such as RAS in mammalian cells typically triggers cellular senescence. Oncogene-induced senescence (OIS) is an important tumor suppression mechanism, and suppression of OIS contributes to cell transformation. Oncogenes trigger senescence through a multitude of incompletely(More)
The Chinese hamster ovary (CHO) cell line xrs-5 is a radiation-sensitive mutant isolated from CHO-K1 cells. The radiation sensitivity is associated with a defect in DNA double-strand break rejoining. The DNA alkaline unwinding technique was used to measure the DNA single-strand breakage caused by gamma-rays in xrs-5 and CHO-K1 cells. Greater rates of DNA(More)
Triple-negative breast cancers (TNBC), negative for estrogen receptor, progesterone receptor, and ERBB2 amplification, are resistant to standard targeted therapies and exhibit a poor prognosis. Furthermore, they are highly heterogeneous with respect to genomic alterations, and common therapeutic targets are lacking though substantial evidence implicates(More)
Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of(More)
Cancer cells can exhibit altered dependency on specific metabolic pathways and targeting these dependencies is a promising therapeutic strategy. Triple-negative breast cancer (TNBC) is an aggressive and genomically heterogeneous subset of breast cancer that is resistant to existing targeted therapies. To identify metabolic pathway dependencies in TNBC, we(More)