Lauren I. R. Ehrlich

Learn More
Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading(More)
Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very(More)
Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Haematopoiesis provides a well-defined model to study epigenetic modifications during cell-fate decisions, as multipotent progenitors (MPPs) differentiate into progressively restricted(More)
As T cells develop, they migrate throughout the thymus where they undergo essential bi-directional signaling with stromal cells in distinct thymic microenvironments. Immature thymocyte progenitors are located in the thymic cortex. Following T cell receptor expression and positive selection, thymocytes undergo a dramatic transition: they become rapidly(More)
Autoimmunity results from a breakdown in central or peripheral tolerance. To establish central tolerance, developing T cells must enter the thymic medulla, where they scan antigen-presenting cells (APCs) displaying a diverse array of autoantigens. If a thymocyte is activated by a self-antigen, the cell undergoes either deletion or diversion into the(More)
Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Hematopoiesis provides Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full(More)
Dedication This is dedicated to my parents, Mark and Iris, who have loved and supported me through the ups and downs, and to my grandparents, Chet and Joyce, without whom I wouldn't be where I am today. The floorplate (FP) is located at the ventral midline of the developing neural tube, and is involved in patterning and specification of ventral and dorsal(More)
Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as(More)
We are developing a new class of lanthanide-based self-assembling molecular nanoparticles as potential reporter molecules for imaging, and as multi-functional nanoprobes or nanosensors in diagnostic systems. These lanthanide "nano-drums" are homogeneous 4d-4f clusters approximately 25 to 30 Å in diameter that can emit from the visible to near-infrared (NIR)(More)
  • 1