Learn More
To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal(More)
Retinal prostheses electrically stimulate neurons to produce artificial vision in people blinded by photoreceptor degenerative diseases. The limited spatial resolution of current devices results in indiscriminate stimulation of interleaved cells of different types, precluding veridical reproduction of natural activity patterns in the retinal output. Here we(More)
Retinitis pigmentosa (RP) is a leading cause of degenerative vision loss, yet its progressive effects on visual signals transmitted from the retina to the brain are not well understood. The transgenic P23H rat is a valuable model of human autosomal dominant RP, exhibiting extensive similarities to the human disease pathology, time course, and(More)
Retinal implants are intended to help patients with degenerative conditions by electrically stimulating surviving cells to produce artificial vision. However, little is known about how individual retinal ganglion cells respond to direct electrical stimulation in degenerating retina. Here we used a transgenic rat model to characterize ganglion cell responses(More)
Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal(More)
Sensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent with human perception, but they have not been compared directly with neural(More)
Retinal ganglion cells exhibit substantial correlated firing: a tendency to fire nearly synchronously at rates different from those expected by chance. These correlations suggest that network interactions significantly shape the visual signal transmitted from the eye to the brain. This study describes the degree and structure of correlated firing among the(More)
To understand a neural circuit requires knowing the pattern of connectivity between its inputs and outputs. For example, the role of the retina in color vision depends on the pattern of connectivity between the lattice of (L)ong, (M)iddle and (S)hort-wavelength sensitive cones and multiple types of retinal ganglion cells, each of which samples the visual(More)
introduction Recently, it has been shown [3] that it is possible to get a handle on both the input and the output cells of macaque retinas, and the functional connections between them: if sufficiently fine-grained stimuli are used to excite the retina, the Spike Triggered Average receptive field of ganglion cells appear to be composed of small islands of(More)
Inferring the functional connectivity in neuronal circuits is a fundamental goal in neuroscience. Recently, [1] showed that it is possible to map both the input (photoreceptor) and the output (ganglion) cells of macaque retinas, and the functional connections between these layers, thanks to extensive experimental access to both inputs and outputs of the(More)