Learn More
To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal(More)
Retinitis pigmentosa (RP) is a leading cause of degenerative vision loss, yet its progressive effects on visual signals transmitted from the retina to the brain are not well understood. The transgenic P23H rat is a valuable model of human autosomal dominant RP, exhibiting extensive similarities to the human disease pathology, time course, and(More)
Retinal prostheses electrically stimulate neurons to produce artificial vision in people blinded by photoreceptor degenerative diseases. The limited spatial resolution of current devices results in indiscriminate stimulation of interleaved cells of different types, precluding veridical reproduction of natural activity patterns in the retinal output. Here we(More)
Natural vision relies on spatiotemporal patterns of electrical activity in the retina. We investigated the feasibility of veridically reproducing such patterns with epiretinal prostheses. Multielectrode recordings and visual and electrical stimulation were performed on populations of identified ganglion cells in isolated peripheral primate retina.(More)
Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal(More)
Retinal implants are intended to help patients with degenerative conditions by electrically stimulating surviving cells to produce artificial vision. However, little is known about how individual retinal ganglion cells respond to direct electrical stimulation in degenerating retina. Here we used a transgenic rat model to characterize ganglion cell responses(More)
Retinal ganglion cells exhibit substantial correlated firing: a tendency to fire nearly synchronously at rates different from those expected by chance. These correlations suggest that network interactions significantly shape the visual signal transmitted from the eye to the brain. This study describes the degree and structure of correlated firing among the(More)
Sensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent with human perception, but they have not been compared directly with neural(More)
To understand a neural circuit requires knowing the pattern of connectivity between its inputs and outputs. For example, the role of the retina in color vision depends on the pattern of connectivity between the lattice of (L)ong, (M)iddle and (S)hort-wavelength sensitive cones and multiple types of retinal ganglion cells, each of which samples the visual(More)
Lauren H. Jepson,1,2 Paweł Hottowy,3 Keith Mathieson,4 Deborah E. Gunning,4 Władysław Dąbrowski,3 Alan M. Litke,5 and E. J. Chichilnisky1 1Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California 92037, 2Bioengineering Department, University of California, San Diego, California 92093, 3AGH University of Science and(More)