Lauren E Richards-Peterson

Learn More
A phase I study was conducted to assess the metabolism and excretion of [(14)C]dabrafenib (GSK2118436; N-{3-[5-(2-amino-4-pyrimidinyl)-2-(1,1-dimethylethyl)-1,3-thiazol-4-yl]-2-fluorophenyl}-2,6-difluorobenzene sulfonamide, methanesulfonate salt), a BRAF inhibitor, in four patients with BRAF V600 mutation-positive tumors after a single oral dose of 95 mg(More)
Dabrafenib is a potent ATP-competitive inhibitor for the V600 mutant b-rapidly accelerated fibrosarcoma (b-raf) kinase currently approved in the United States for the treatment of metastatic melanoma. Studies were conducted in human liver microsomes, recombinant human cytochrome P450 (P450) enzymes, and human hepatocytes to investigate the potential of(More)
The induction of CYP2C9 by dabrafenib using S-warfarin as a probe and the effects of a CYP3A inhibitor (ketoconazole) and a CYP2C8 inhibitor (gemfibrozil) on dabrafenib pharmacokinetics were evaluated in patients with BRAF V600 mutation-positive tumors. Dabrafenib single- and repeat-dose pharmacokinetics were also evaluated. S-warfarin AUC(0- ∞) decreased(More)
The BRAF inhibitor dabrafenib was recently approved for the treatment of certain BRAF V600 mutation-positive tumors, either alone or in combination therapy with the mitogen-activated extracellular signal regulated kinase 1 (MEK1) and MEK2 inhibitor, trametinib. This article presents the dabrafenib transporter-mediated drug-drug interaction (DDI) risk(More)
Dabrafenib is an orally bioavailable, potent, and selective inhibitor of human wild-type BRAF and CRAF kinases as well as mutant forms of BRAF kinase. The aim of this phase 1, single-center, open-label study in four patients with BRAF mutation-positive solid tumors was to determine the absolute bioavailability of a 150 mg oral dose of dabrafenib. A(More)
Dabrafenib is a potent ATP-competitive inhibitor for the V600 mutant b-rapidly accelerated fibrosarcoma (b-raf) kinase currently approved in the United States for the treatment of metastatic melanoma. Studies were conducted in human liver microsomes, recombinant human cytochrome P450 (P450) enzymes, and human hepatocytes to investigate the potential of(More)
GSK2982772 is a highly selective inhibitor of receptor-interacting protein kinase 1 (RIPK1) being developed to treat chronic inflammatory diseases. This first-in-human study evaluated safety, tolerability, pharmacokinetics (PK), and exploratory pharmacodynamics (PD) of GSK2982772 administered orally to healthy male volunteers. This was a Phase I,(More)
  • 1