Lauren E. Flynn

Learn More
The development of an engineered adipose tissue substitute, capable of supporting reliable, predictable, and complete fat tissue formation, would be of significant value in the fields of plastic and reconstructive surgery. Towards the goal of engineering an optimized microenvironment for adipogenesis, a decellularization strategy was developed for adipose(More)
BACKGROUND Procedure instruction for physicians-in-training is usually nonstandardized. The authors observed that during insertion of central venous catheters (CVCs), few physicians used full-size sterile drapes (an intervention proven to reduce the risk for CVC-related infection). OBJECTIVE To improve standardization of infection control practices and(More)
A tissue-engineered adipose substitute would have numerous applications in plastic and reconstructive surgery. This work involves the characterization of the in vitro cellular response of primary human adipose-derived stem cells (ASC) to three dimensional, naturally derived scaffolds. To establish a more thorough understanding of the influence of the(More)
Tissue engineering has shown promise for the development of constructs to facilitate large volume soft tissue augmentation in reconstructive and cosmetic plastic surgery. This article reviews the key progress to date in the field of adipose tissue engineering. In order to effectively design a soft tissue substitute, it is critical to understand the native(More)
Hydrogel tubes of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (p(HEMA-co-MMA)) made by liquid-liquid centrifugal casting are being investigated as potential nerve guidance channels in the central nervous system. An important criterion for the nerve guidance channel is that its mechanical properties are similar to those of the spinal cord, where(More)
We have developed a method to create longitudinally oriented channels within poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for neural tissue engineering applications. Incorporated into an entubulation strategy, these scaffolds have the potential to enhance nerve regeneration after transection injuries of either the spinal cord or the peripheral nerve(More)
An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human(More)
With the aim of developing a clinically-translatable cell expansion and delivery vehicle for adipose tissue engineering, the adipogenic differentiation of human adipose-derived stem cells (ASCs) was investigated on microcarriers fabricated from human decellularized adipose tissue (DAT). ASCs seeded on the DAT microcarriers and cultured in adipogenic(More)
To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a(More)
An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling(More)