Lauren C. Kinkead

Learn More
UNLABELLED A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in(More)
Tularemia is a disease characterized by profound neutrophil accumulation and tissue destruction. The causative organism, Francisella tularensis, is a facultative intracellular bacterium that replicates in neutrophil cytosol, inhibits caspase activation and profoundly prolongs cell lifespan. Here, we identify unique features of this infection and provide(More)
The highly conserved macromolecular synthesis operon (MMSO) contains both dnaG (primase) and sigA (primary sigma factor). However, in previously evaluated gram-positive species, the MMSO is divergent upstream of dnaG. The MMSO of Bacillus subtilis contains three open reading frames (ORFs) that are differentially regulated by multiple promoters. In(More)
Francisella tularensis in an intracellular bacterial pathogen that causes a potentially lethal disease called tularemia. Studies performed nearly 100 years ago revealed that neutrophil accumulation in infected tissues correlates directly with the extent of necrotic damage during F. tularensis infection. However, the dynamics and details of(More)
Francisella novicida is a Gram-negative bacterium that is closely related to the highly virulent facultative intracellular pathogen, Francisella tularensis Data published by us and others demonstrate that F. tularensis virulence correlates directly with its ability to impair constitutive apoptosis and extend human neutrophil lifespan. In contrast, F.(More)
A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus(More)
F. tularensis infects several cell types including neutrophils, and aberrant neutrophil accumulation contributes to tissue destruction during tularemia. We demonstrated previously that F. tularensis strains Schu S4 and LVS markedly delay human neutrophil apoptosis and thereby prolong cell lifespan, but the bacterial factors that mediate this aspect of(More)
Francisella tularensis is the causative agent of tularemia and is categorized by the CDC as a Tier 1 select agent. This gram-negative, facultative-intracellular bacterium infects macrophages by escaping the phagosome and replicating with high efficacy in the cytosol. Multiple virulence factors, including capsule and lipopolysaccharide (LPS), are expressed(More)
  • 1