Laurel K. Willig

Learn More
Neurodevelopmental disorders (NDDs) affect more than 3% of children and are attributable to single-gene mutations at more than 1000 loci. Traditional methods yield molecular diagnoses in less than one-half of children with NDD. Whole-genome sequencing (WGS) and whole-exome sequencing (WES) can enable diagnosis of NDD, but their clinical and(More)
BACKGROUND Genetic disorders and congenital anomalies are the leading causes of infant mortality. Diagnosis of most genetic diseases in neonatal and paediatric intensive care units (NICU and PICU) is not sufficiently timely to guide acute clinical management. We used rapid whole-genome sequencing (STATseq) in a level 4 NICU and PICU to assess the rate and(More)
While the cost of whole genome sequencing (WGS) is approaching the realm of routine medical tests, it remains too tardy to help guide the management of many acute medical conditions. Rapid WGS is imperative in light of growing evidence of its utility in acute care, such as in diagnosis of genetic diseases in very ill infants, and genotype-guided choice of(More)
Today there exist two medical applications where relatively strong evidence exists to support the broad adoption of genome-informed precision medicine. These are the differential diagnosis of single gene diseases and genotype-based selection of patients for targeted cancer therapies. However, despite the availability of the $1000 genome and $700 exome for(More)
A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this, we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater(More)
Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates(More)
The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to(More)
As the ability to identify the contribution of genetic background to human disease continues to advance, there is no discipline of medicine in which this may have a larger impact than in the care of the ill neonate. Newborns with congenital malformations, syndromic conditions, and inherited disorders often undergo an extensive, expensive, and long(More)
Inherited renal disease is a leading cause of morbidity and mortality in pediatric nephrology. High throughput advancements in genomics have led to greater understanding of the biologic underpinnings of these diseases. However, the underlying genetic changes explain only part of the molecular biology that contributes to disease manifestation and(More)
  • 1