Laurel A. Grisanti

Learn More
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial(More)
The entorhinal cortex is closely associated with the consolidation and recall of memories, Alzheimer disease, schizophrenia, and temporal lobe epilepsy. Norepinephrine is a neurotransmitter that plays a significant role in these physiological functions and neurological diseases. Whereas the entorhinal cortex receives profuse noradrenergic innervations from(More)
Catecholamines released from the sympathetic nervous system in response to stress or injury affect expression of inflammatory cytokines generated by immune cells. α(1)-Adrenergic receptors (ARs) are expressed on innate immune cell populations, but their subtype expression patterns and signaling characteristics are not well characterized. Primary human(More)
β-Adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. We hypothesized that acute βAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis.(More)
Label-free systems for the agnostic assessment of cellular responses to receptor stimulation have been shown to provide a sensitive method to dissect receptor signaling. β-adenergic receptors (βAR) are important regulators of normal and pathologic cardiac function and are expressed in cardiomyocytes as well as cardiac fibroblasts, where relatively fewer(More)
Stress induced circulating catecholamines are hypothesized to selectively activate adrenergic receptors (ARs) on immunocompetent cells modulating their inflammatory response to trauma or environmental toxins. We characterized changes in expression of a pro-inflammatory cytokine modulated by beta-AR activation in human primary and immortalized monocytes that(More)
BACKGROUND Enhanced arginine vasopressin levels are associated with increased mortality during end-stage human heart failure, and cardiac arginine vasopressin type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness.(More)
RATIONALE G protein-coupled receptor kinases (GRKs) acting in the cardiomyocyte regulate important signaling events that control cardiac function. Both GRK2 and GRK5, the predominant GRKs expressed in the heart, have been shown to be upregulated in failing human myocardium. Although the canonical role of GRKs is to desensitize G protein-coupled receptors(More)
The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca(2+) signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we(More)