Learn More
UV irradiation acts as a broad activator of cell surface growth factor and cytokine receptors. This ligand-independent receptor activation induces multiple downstream signaling pathways that regulate expression of multiple genes. These signaling pathways converge to stimulate transcription factor AP-1. Among genes whose expression is regulated by AP-1 are(More)
We have shown that autocrine proliferation of human keratinocytes (KCs) is strongly dependent upon amphiregulin (AREG), whereas blockade of heparin-binding EGF-like growth factor (HB-EGF) inhibits KC migration in scratch wound assays. Here we demonstrate that expression of soluble HB-EGF (sHB-EGF) or full-length transmembrane HB-EGF (proHB-EGF), but not(More)
The dermal extracellular matrix (ECM) provides strength and resiliency to skin. The ECM consists mostly of type I collagen fibrils, which are produced by fibroblasts. Binding of fibroblasts to collagen fibrils generates mechanical forces, which regulate cellular morphology and function. With aging, collagen fragmentation reduces fibroblast-ECM binding and(More)
The hallmark of neurofibromatosis type 1 is the development of dermal and plexiform neurofibromas. Neurofibromatosis type 1 patients with plexiform neurofibromas are at risk of developing malignant peripheral nerve sheath tumors. We applied a 22,000-oligonucleotide microarray transcriptomic approach to a series of plexiform neurofibromas in comparison with(More)
The increased incidence of non-healing skin wounds in developed societies has prompted tremendous research efforts on the complex process known as “wound healing”. Unfortunately, the weak relevance of modern wound healing research to human health continues to be a matter of concern. This review summarizes the current knowledge of the cellular mechanisms(More)
Human skin heals more slowly in aged vs. young adults, but the mechanism for this delay is unclear. In humans, eccrine sweat glands (ESGs) and hair follicles underlying wounds generate cohesive keratinocyte outgrowths that expand to form the new epidermis. Here, we compared the re-epithelialization of partial-thickness wounds created on the forearm of(More)
The importance of the extracellular matrix (ECM) in fibrosis has been recognized for a long time, not only because ECM’s increased stiffness hampers tissue function, but also because the ECM provides the mechanical tension that maintains resident cells’ synthetic phenotype. A study by Parker and colleagues (Journal of Clinical Investigation 124, 1622–1635,(More)
  • 1