Learn More
The U1 small nuclear RNA (snRNA)--in the form of the U1 spliceosomal Sm small nuclear ribonucleoprotein particle (snRNP) that contains seven Sm and three U1-specific RNP proteins-has a crucial function in the recognition and removal of pre-messenger RNA introns. Here, we show that a fraction of human U1 snRNA specifically associates with the nuclear(More)
TAF15 (formerly TAF(II)68) is a nuclear RNA-binding protein that is associated with a distinct population of TFIID and RNA polymerase II complexes. TAF15 harbours an N-terminal activation domain, an RNA recognition motif (RRM) and many Arg-Gly-Gly (RGG) repeats at its C-terminal end. The N-terminus of TAF15 serves as an essential transforming domain in the(More)
Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that removes uracil and oxidised pyrimidines from DNA. We show that SMUG1 interacts with the pseudouridine synthase Dyskerin (DKC1) and colocalizes with DKC1 in nucleoli and Cajal bodies. As DKC1 functions in RNA processing, we tested whether SMUG1(More)
TAF15 (formerly TAFII68) is a member of the FET (FUS, EWS, TAF15) family of RNA- and DNA-binding proteins whose genes are frequently translocated in sarcomas. By performing global gene expression profiling, we found that TAF15 knockdown affects the expression of a large subset of genes, of which a significant percentage is involved in cell cycle and cell(More)
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these(More)
Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1(More)
  • 1