Learn More
H(2)O is one of the most essential molecules for cellular life. Cell volume, osmolality and hydrostatic pressure are tightly controlled by multiple signaling cascades and they drive crucial cellular functions ranging from exocytosis and growth to apoptosis. Ion fluxes and cell shape restructuring induce asymmetries in osmotic potential across the plasma(More)
Pollen tubes are one of the fastest growing eukaryotic cells. Rapid anisotropic growth is supported by highly active exocytosis and endocytosis at the plasma membrane, but the subcellular localization of these sites is unknown. To understand molecular processes involved in pollen tube growth, it is crucial to identify the sites of vesicle localization and(More)
Pollen tube cell volume changes rapidly in response to perturbation of the extracellular osmotic potential. This report shows that specific phospholipid signals are differentially stimulated or attenuated during osmotic perturbations. Hypo-osmotic stress induces rapid increases in phosphatidic acid (PA). This response occurs starting at the addition of 25%(More)
Oscillatory growth of pollen tubes has been correlated with oscillatory influxes of the cations Ca(2+), H(+), and K(+). Using an ion-specific vibrating probe, a new circuit was identified that involves oscillatory efflux of the anion Cl(-) at the apex and steady influx along the tube starting at 12 microm distal to the tip. This spatial coupling of influx(More)
Pollen tube growth is localized at the apex and displays oscillatory dynamics. It is thought that a balance between intracellular turgor pressure (hydrostatic pressure, reflected by the cell volume) and cell wall loosening is a critical factor driving pollen tube growth. We previously demonstrated that water flows freely into and out of the pollen tube(More)
Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell signaling. Recent advances led to the formulation of a new(More)
The long-standing model of tip growth in pollen tubes considers that exocytosis and growth occur at the apex and that the pool of very small vesicles in the apical dome contains secretory (exocytic) vesicles. However, recent work on vesicle trafficking dynamics in tobacco pollen tubes shows that exocytosis occurs in the subapical region. Taking these and(More)
The overall function of a cell is determined by its contingent of active signal transduction cascades interacting on multiple levels with metabolic pathways, cytoskeletal organization, and regulation of gene expression. Much work has been devoted to analysis of individual signalling cascades interacting with unique cellular targets. However, little is known(More)
A spatially and temporally realistic simulation of Escherichia coli chemotaxis was used to investigate the swimming patterns of wild-type and mutant bacteria within a rectangular arena in response to chemoattractant gradients. Swimming dynamics were analysed during long time series with phase-space trajectories, power spectra and estimations of fractal(More)