Learn More
Calorie restriction extends life span in organisms ranging from yeast to mammals. Here, we report that calorie restriction for either 3 or 12 months induced endothelial nitric oxide synthase (eNOS) expression and 3',5'-cyclic guanosine monophosphate formation in various tissues of male mice. This was accompanied by mitochondrial biogenesis, with increased(More)
Recent evidence points to a strong relationship between increased mitochondrial biogenesis and increased survival in eukaryotes. Branched-chain amino acids (BCAAs) have been shown to extend chronological life span in yeast. However, the role of these amino acids in mitochondrial biogenesis and longevity in mammals is unknown. Here, we show that a(More)
The endocannabinoid system (ECS) plays a critical role in obesity development. The pharmacological blockade of cannabinoid receptor type 1 (CB(1)) has been shown to reduce body weight and to alleviate obesity-related metabolic disorders. An unsolved question is at which anatomical level CB(1) modulates energy balance and the mechanisms involved in its(More)
Preputial exudates were collected from 3 bulls infected with Tritrichomonas foetus by scraping the mucosa with a specially designed instrument and by aspiration. For diagnostic purposes the scraping method was superior direct microscopic examination but both methods were equally good when the samples were cultured within 2 hours of collection. The organism(More)
Obesity is associated with chronic low-grade inflammation. Thus, at metabolically relevant sites, including adipose tissue and muscle, there is abnormal production of proinflammatory cytokines such as TNF-alpha. Here we demonstrate that eNOS expression was reduced, with a concomitant reduction of mitochondrial biogenesis and function, in white and brown(More)
OBJECTIVE Cannabinoid type 1 (CB1) receptor blockade decreases body weight and adiposity in obese subjects; however, the underlying mechanism is not yet fully understood. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) induces mitochondrial biogenesis and function in adipocytes. This study was undertaken to test whether CB1 receptor blockade(More)
OBJECTIVE Cannabinoid type 1 (CB1) receptor is involved in whole-body and cellular energy metabolism. We asked whether CB1 receptor stimulation was able to decrease mitochondrial biogenesis in different metabolically active tissues of obese high-fat diet (HFD)-fed mice. RESEARCH DESIGN AND METHODS The effects of selective CB1 agonist(More)
The liver sustains the greatest damage from ethanol (EtOH) abuse. EtOH and its metabolites impair hepatocyte metabolism, causing intracellular accumulation of proteins and lipids and increasing radical oxygen species production. These processes are toxic to the mitochondrial respiratory chain and to mitochondrial DNA. We have recently shown that(More)
Insulin resistance and obesity are associated with a reduction of mitochondrial content in various tissues of mammals. Moreover, a reduced nitric oxide (NO) bioavailability impairs several cellular functions, including mitochondrial biogenesis and insulin-stimulated glucose uptake, two important mechanisms of body adaptation in response to physical(More)
Endurance exercise training increases cardiac energy metabolism through poorly understood mechanisms. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) in cardiomyocytes contributes to cardiac adaptation. Here we demonstrate that the NO donor diethylenetriamine-NO (DETA-NO) activated mitochondrial biogenesis and function, as assessed by(More)