Learn More
During the development of the cerebral cortex, progenitor cells produce neurons that migrate to laminar positions appropriate for their birth dates, adopt specific neuronal identities, and form appropriate local and long-distance axonal connections. Here, we report that forebrain embryonic zinc-finger-like protein (Fezl), a putative zinc-finger(More)
Over 90% of Rett syndrome (RTT) cases have a mutation in the X-linked gene encoding methyl CpG binding-protein 2 (MeCP2). A mouse model that reprises clinical manifestations of the disease would be valuable for examining disease mechanisms. Here, we characterize physical and behavioral measures, as well as brain region volumes in young adult mice that have(More)
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into(More)
Rett syndrome (RTT) is an autism-spectrum disorder caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Abnormalities in social behavior, stereotyped movements, and restricted interests are common features in both RTT and classic autism. While mouse models of both RTT and autism exist, social behaviors have not been(More)
Respiratory disturbances are a primary phenotype of the neurological disorder, Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Mouse models generated with null mutations in Mecp2 mimic respiratory abnormalities in RTT girls. Large deletions, however, are seen in only ∼10% of affected human(More)
Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which(More)
In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists,(More)
Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnormalities attributed to early deficits in synaptic(More)
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). While numerous transgenic mice have been created(More)
Folate and choline, two nutrients involved in the one-carbon metabolic cycle, are intimately involved in regulating DNA integrity, synthesis, biogenic amine synthesis, and methylation. In this review, we discuss evidence that folate and choline play an important role in normal cognitive development, and that altered levels of these nutrients during periods(More)