Learn More
CONTEXT Preterm infants have a high prevalence of long-term cognitive and behavioral disturbances. However, it is not known whether the stresses associated with premature birth disrupt regionally specific brain maturation or whether abnormalities in brain structure contribute to cognitive deficits. OBJECTIVE To determine whether regional brain volumes(More)
OBJECTIVE To compare regional brain volumes measured in term and preterm infants, and to correlate regional volumes with measures of neurodevelopmental outcome. METHODS High-contrast, high-resolution magnetic resonance imaging scans were acquired in 10 preterm and 14 term infants who were scanned near term. The cerebrum was segmented into cortical gray(More)
Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to(More)
CONTEXT Preterm very low-birth-weight (VLBW) infants have a high prevalence of neurodevelopmental disability when evaluated during the first several years of life. However, recent experimental data suggest that the developing brain may recover from or compensate for injury. OBJECTIVE To determine if there is cognitive improvement throughout early and(More)
To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and(More)
Preterm birth is frequently associated with both neuropathologic and cognitive sequelae. This study examined cortical lobe, subcortical, and lateral ventricle development in association with perinatal variables and cognitive outcome. High-resolution volumetric magnetic resonance imaging scans were acquired and quantified using advanced image processing(More)
The neurodevelopmental disabilities of those who were born prematurely have been well described, yet the underlying alterations in brain development that lead to these changes remain poorly understood. Processes that are vulnerable to injury in the developing brain include maturation of oligodendrocyte precursors and genetically programmed changes in(More)
OBJECTIVES To more precisely examine regional and subregional microstructural brain changes associated with preterm birth. STUDY DESIGN We obtained brain volumes from 29 preterm children, age 12 years, with no ultrasound scanning evidence of intraventricular hemorrhage or cystic periventricular leukomalacia in the newborn period, and 22 age- and(More)
  • Devon M Fagel, Yosif Ganat, +4 authors Flora M Vaccarino
  • 2009
Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood. Here, we show that chronic hypoxia from postnatal days 3 (P3) to 10 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume.(More)
Chronic sublethal hypoxia has been associated with changes in neurovascular behavior, mediated, in part, by induction of vascular endothelial growth factor-A (VEGF-A(165)). In this report we demonstrate that RBE4 cells (derived from rodent cerebral microvasculature), when cultured in three-dimensional collagen gels: (1) Are induced to undergo increased tube(More)