Learn More
OBJECTIVE To compare regional brain volumes measured in term and preterm infants, and to correlate regional volumes with measures of neurodevelopmental outcome. METHODS High-contrast, high-resolution magnetic resonance imaging scans were acquired in 10 preterm and 14 term infants who were scanned near term. The cerebrum was segmented into cortical gray(More)
To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER(T2)) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER(T2)) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and(More)
Very low birth weight preterm (PT) children are at high risk for brain injury. Employing diffusion tensor imaging (DTI), we tested the hypothesis that PT adolescents would demonstrate microstructural white matter disorganization relative to term controls at 16 years of age. Forty-four PT subjects (600-1250 g birth weight) without neonatal brain injury and(More)
Converging data suggest recovery from injury in the preterm brain. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that cerebral connectivity involving Wernicke's area and other important cortical language regions would differ between preterm (PT) and term (T) control school age children during performance of an auditory language(More)
Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to(More)
Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600-1250 g birth weight), without neonatal brain injury on neonatal cranial(More)
Resting-state fMRI (rs-fMRI) holds promise as a clinical tool to characterize and monitor the phenotype of different neurological and psychiatric disorders. The most common analysis approach requires the definition of one or more regions-of-interest (ROIs). However this need for a priori ROI information makes rs-fMRI inadequate to survey functional(More)
Prematurely born children are at increased risk for language deficits at school age and beyond, but the neurobiological basis of these findings remains poorly understood. Thirty-one PT adolescents (600-1250g birth weight) and 36 T controls were evaluated using an fMRI passive language task and neurodevelopmental assessments including: the Wechsler(More)
OBJECTIVES To use functional magnetic resonance imaging (fMRI) to test the hypothesis that subjects who were born prematurely develop alternative systems for processing language. STUDY DESIGN Subjects who were born prematurely (n = 14; 600-1250 g birthweight) without neonatal brain injury and 10 matched term control subjects were examined with a fMRI(More)
The neurodevelopmental disabilities of those who were born prematurely have been well described, yet the underlying alterations in brain development that lead to these changes remain poorly understood. Processes that are vulnerable to injury in the developing brain include maturation of oligodendrocyte precursors and genetically programmed changes in(More)