Laura Nekiunaite

Learn More
BACKGROUND Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus nidulans grown on cereal starches from(More)
Lytic polysaccharide monooxygenases (LPMOs) are important for the enzymatic conversion of biomass and seem to play a key role in degradation of the plant cell wall. In this study, we characterize an LPMO from the fungal plant pathogen Fusarium graminearum (FgLPMO9A) that catalyzes the mixed C1/C4 oxidative cleavage of cellulose and xyloglucan, but is(More)
Analysis of circulating tumor cells (CTC) holds promise of providing liquid biopsies from patients with cancer. However, current methods include enrichment procedures. We present a method (CytoTrack), where CTC from 7.5 mL of blood is stained, analyzed and counted by a scanning fluorescence microscope. The method was validated by breast cancer cells (MCF-7)(More)
Starch-binding modules of family 20 (CBM20) are present in 60% of lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative breakdown of starch, which highlights functional importance in LPMO activity. The substrate-binding properties of starch-active LMPOs, however, are currently unexplored. Affinities and binding-thermodynamics of two(More)
  • 1