Learn More
Using conventional MRI the subthalamic nucleus (STN) is not clearly defined. Our objective was to define the anatomy of the STN using 9.4 T MRI of post mortem tissue with histological validation. Spin-echo (SE) and 3D gradient-echo (GE) images were obtained at 9.4 T in 8 post mortem tissue blocks and compared directly with corresponding histological slides(More)
Amyloid imaging studies of presymptomatic familial Alzheimer's disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer's(More)
We performed a prospective multi-centre study using functional magnetic resonance imaging (fMRI) to better characterize the relationships between clinical expression and brain function in patients with multiple sclerosis (MS) at eight European sites (56 MS patients and 60 age-matched, healthy controls). Patients showed greater task-related activation(More)
With expanding potential clinical applications of functional magnetic resonance imaging (fMRI) it is important to test how reliable different measures of fMRI activation are between subjects and sessions and between centres. This study compared variability across 17 patients with multiple sclerosis (MS) and 22 age-matched healthy controls (HC) in 5 European(More)
In this multicenter study, we used dynamic causal modeling to characterize the abnormalities of effective connectivity of the sensorimotor network in 61 patients with multiple sclerosis (MS) compared with 74 age-matched healthy subjects. We also investigated the correlation of such abnormalities with findings derived from structural MRI. In a subgroup of(More)
The auditory tracts in the human brain connect the inferior colliculus (IC) and medial geniculate body (MGB) to various components of the auditory cortex (AC). While in non-human primates and in humans, the auditory system is differentiated in core, belt and parabelt areas, the correspondence between these areas and anatomical landmarks on the human(More)
Motor control demands coordinated excitation and inhibition across distributed brain neuronal networks. Recent work has suggested that multiple sclerosis (MS) may be associated with impairments of neuronal inhibition as part of more general progressive impairments of connectivity. Here, we report results from a prospective, multi-centre fMRI study designed(More)
Among the repertoire of motor functions, although hand movement and speech production tasks have been investigated widely by functional neuroimaging, paradigms combining both movements have been studied less so. Such paradigms are of particular interest in Parkinson's disease, in which patients have specific difficulties performing two movements(More)
Deep brain stimulation of the subthalamic nucleus (STN DBS) has become an accepted treatment for patients experiencing the motor complications of Parkinson's disease (PD). While its successes are becoming increasingly apparent, the mechanisms underlying its action remain unclear. Multiple studies using radiotracer-based imaging have investigated DBS-induced(More)
Short-term adaptation indicates the attenuation of the functional MRI (fMRI) response during repeated task execution. It is considered to be a physiological process, but it is unknown whether short-term adaptation changes significantly in patients with brain disorders, such as multiple sclerosis (MS). In order to investigate short-term adaptation during a(More)