Learn More
X-chromosome dosage compensation by the MSL (male-specific lethal) complex is required in Drosophila melanogaster to increase gene expression from the single male X to equal that of both female X chromosomes. Instead of focusing solely on protein complexes released from DNA, here we used chromatin-interacting protein MS (ChIP-MS) to identify MSL(More)
Histone post-translational modifications (PTMs) comprise one of the most intricate nuclear signaling networks that govern gene expression in a long-term and dynamic fashion. These PTMs are considered to be 'epigenetic' or heritable from one cell generation to the next and help establish genomic expression patterns. While much of the analyses of histones(More)
The connections between various nuclear processes and specific histone posttranslational modifications are dependent to a large extent on the acquisition of those modifications after histone synthesis. The reestablishment of histone posttranslational modifications after S phase is especially critical for H3K9 and H3K27 trimethylation, both of which are(More)
Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation(More)
HIV-1 replication requires the insertion of viral DNA into the host genome, which is catalyzed by HIV-1 integrase. This integration event can lead to vast changes in the chromatin landscape and gene transcription. In this study, we sought to correlate the extensive changes of histone PTM abundances with the equally dynamic shifts in host transcriptional(More)
Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity(More)
MS-based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization.(More)
In eukaryotic organisms, histone posttranslational modifications (PTMs) are indispensable for their role in maintaining cellular physiology, often through their mediation of chromatin-related processes such as transcription. Targeted investigations of this ever expanding network of chemical moieties continue to reveal genetic, biochemical, and cellular(More)
  • 1