Laura M. Laiglesia

Learn More
The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) have been reported to improve obesity-associated metabolic disorders including chronic inflammation, insulin resistance and dyslipidaemia. Growing evidence exits about adipose tissue as a target in mediating the beneficial effects of these(More)
Inflammation is involved in the pathophysiology of many chronic diseases, such as rheumatoid arthritis and neurodegenerative diseases. Several studies have evidenced important anti-inflammatory and immunomodulatory properties of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs). This review illustrates current knowledge about the efficacy of n-3(More)
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the(More)
Cardiotrophin (CT)-1 is a regulator of glucose and lipid homeostasis. In the present study, we analyzed whether CT-1 also acts to peripherally regulate metabolic rhythms and adipose tissue core clock genes in mice. Moreover, the circadian pattern of plasma CT-1 levels was evaluated in normal-weight and overweight subjects. The circadian rhythmicity of(More)
Eicosapentaenoic acid (EPA), a n-3 long-chain polyunsaturated fatty acid, has been reported to have beneficial effects in obesity-associated metabolic disorders. The objective of the present study was to determine the effects of EPA on the regulation of genes involved in lipid metabolism, and the ability of EPA to induce mitochondrial biogenesis and beiging(More)
Obesity is associated with high levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), which promotes inflammation in adipose tissue. The omega-3 PUFAs, and their derived lipid mediators, such as Maresin 1 (MaR1) have anti-inflammatory effects on adipose tissue. This study aimed to analyze if MaR1 may counteract alterations(More)
BACKGROUND/OBJECTIVES The aim of this study was to characterize the effects of Maresin 1 (MaR1) in obesity-related liver steatosis and the mechanisms involved. METHODS MaR1 effects on fatty liver disease were tested in ob/ob (2-10 μg kg-1 i.p., 20 days) and in diet-induced obese (DIO) mice (2 μg kg-1, i.p., or 50 μg kg-1, oral gavage for 10 days), as well(More)
The beneficial actions of n-3 fatty acids on obesity-induced insulin resistance and inflammation have been related to the synthesis of specialized proresolving lipid mediators (SPMs) like resolvins. The aim of this study was to evaluate the ability of one of these SPMs, maresin 1 (MaR1), to reverse adipose tissue inflammation and/or insulin resistance in(More)
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. Protein tyrosine phosphatase 1B (PTP1B), a negative modulator of insulin and cytokine signaling, is a therapeutic target for type 2 diabetes and obesity. We investigated the impact of PTP1B deficiency during NAFLD, particularly in(More)
  • 1