Learn More
The stimulation of muscle and adipose tissue glucose metabolism, which is ultimately responsible for bringing about post-absorptive blood glucose clearance, is the primary clinically relevant action of insulin. Insulin acts on many steps of glucose metabolism, but one of the most important effects is its ability to increase the rate of cellular glucose(More)
An interaction of SNAP-23 and syntaxin 4 on the plasma membrane with vesicle-associated synaptobrevin-2 and/or cellubrevin, known as SNAP (soluble N-ethyl-maleimide-sensitive factor attachment protein) receptors or SNAREs, has been proposed to provide the targeting and/or fusion apparatus for insulin-stimulated translocation of the GLUT4 isoform of glucose(More)
Insulin stimulates glucose uptake into adipocytes by promoting the translocation of the glucose transporter isoform 4 (GLUT4) from intracellular vesicles to the plasma membrane. In 3T3-L1 adipocytes GLUT4 resides both in an endosomal pool, together with transferrin receptors, and in a unique pool termed 'GLUT4 storage vesicles' (GSVs), which excludes(More)
Subcellular compartmentalisation of signalling molecules is an important phenomenon not only in defining how a signalling pathway is activated but also in influencing the desired physiological output of that pathway (e.g. cell growth or differentiation, regulation of metabolism, cytoskeletal changes etc.). Biochemical analyses of protein and lipid(More)
The activation of phosphatidylinositol 3-kinase (PI 3-kinase) and production of PtdIns(3,4,5)P(3) is crucial in the actions of numerous extracellular stimuli, including insulin-stimulated glucose uptake. Platelet-derived growth factor (PDGF) also stimulates PI 3-kinase, but only weakly promotes glucose uptake when compared with insulin. Insulin and PDGF(More)
Insulin-stimulated glucose uptake involves the recruitment of the glucose transporter 4 isoform (GLUT4) from an intracellular location to the plasma membrane of fat and muscle cells. Although the activation of the PI3-kinase/protein kinase B (PKB) pathway is central to this effect of insulin, the key substrates for PKB that are involved require(More)
The Forkhead box transcription factor FoxO1 regulates metabolic gene expression in mammals. FoxO1 activity is tightly controlled by phosphatidylinositol 3-kinase (PI3K) signaling, resulting in its phosphorylation and nuclear exclusion. We sought here to determine the mechanisms involved in glucose and insulin-stimulated nuclear shuttling of FoxO1 in(More)
Understanding the mechanism of insulin action remains one of the most important challenges in modern medical biology. Recent advances in cell imaging techniques, increased processing power of computers and the internet, and the introduction of novel fluorescent reagents such as green fluorescent proteins (GFPs) have revolutionized our ability to scrutinize(More)
We have investigated the role of protein kinase B (Akt) in the insulin-stimulated translocation of vesicles containing the insulin-responsive isoform of glucose transporter (GLUT4) to the plasma membrane of adipocytes. Previous reports have suggested that protein kinase B can bind to intracellular GLUT4 vesicles in an insulin-dependent manner, but the(More)