Learn More
We examine the electrochemical gradients that form across chemical garden membranes and investigate how self-assembling, out-of-equilibrium inorganic precipitates-mimicking in some ways those generated in far-from-equilibrium natural systems-can generate electrochemical energy. Measurements of electrical potential and current were made across membranes(More)
Wolfe-Simon et al. (Research Articles, 3 June 2011, p. 1163; published online 2 December 2010) argued that the bacterial strain GFAJ-1 can vary the elemental composition of its biomolecules by substituting arsenic for phosphorus. Although their data show that GFAJ-1 is an extraordinary extremophile, consideration of arsenate redox chemistry undermines the(More)
This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between(More)
In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are(More)
The 8th meeting of the NASA Astrobiology Institute’s Thermodynamics, Disequilibrium, Evolution (TDE) Focus Group took place in November 2014 at the Earth-Life Science Institute, at the Tokyo Institute of Technology, Japan. The principal aim of this workshop was to discuss the conditions for early Earth conducive for the emergence of life, with particular(More)
Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled(More)
Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and(More)
Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum(More)
Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in(More)