Laura L. Walkup

Learn More
BACKGROUND Cystic fibrosis (CF) is a genetic disease which carries high morbidity and mortality from lung-function decline. Monitoring disease progression and treatment response in young patients is desirable, but serial imaging via CT is often considered prohibitive, and detailed functional information cannot be obtained using conventional imaging(More)
Clinical magnetic resonance imaging of the lung is technologically challenging, yet over the past two decades hyperpolarized noble gas ((3)He and (129)Xe) imaging has demonstrated the ability to measure multiple pulmonary functional biomarkers. There is a growing need for non-ionizing, non-invasive imaging techniques due to increased concern about cancer(More)
RATIONALE Bronchopulmonary dysplasia (BPD) is a prevalent yet poorly characterized pulmonary complication of premature birth; the current definition is based solely on oxygen dependence at 36 weeks postmenstrual age without objective measurements of structural abnormalities across disease severity. OBJECTIVES We hypothesize that magnetic resonance imaging(More)
PURPOSE To implement pulmonary three-dimensional (3D) radial ultrashort echo-time (UTE) MRI in non-sedated, free-breathing neonates and adults with retrospective motion tracking of respiratory and intermittent bulk motion, to obtain diagnostic-quality, respiratory-gated images. METHODS Pulmonary 3D radial UTE MRI was performed at 1.5 tesla (T) during free(More)
PURPOSE To determine the feasibility of pulmonary magnetic resonance imaging (MRI) of neonatal lung structures enabled by combining two novel technologies: first, a 3D radial ultrashort echo time (UTE) pulse sequence capable of high spatial resolution full-chest imaging in nonsedated quiet-breathing neonates; and second, a unique, small-footprint 1.5T MRI(More)
Imaging has played a vital role in the clinical assessment of bronchopulmonary dysplasia (BPD) since its first recognition. In this review, how chest radiograph, computerized tomography (CT), nuclear medicine, and MRI have contributed to the understanding of BPD pathology and how emerging advancements in these methods, including low-dose and quantitative(More)
PURPOSE To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. MATERIALS AND METHODS Two(More)
Hyperpolarized 129Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized 129Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic(More)
OBJECTIVE To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. STUDY DESIGN Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and(More)
The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under(More)
  • 1