Learn More
The rate, concentration dependence and extent of histamine-evoked Weibel-Palade body (WPB) exocytosis were investigated with time-resolved fluorescence microscopy in cultured human umbilical vein endothelial cells expressing WPB-targeted chimeras of enhanced green fluorescent protein (EGFP). Exocytosis of single WPBs was characterized by an increase in EGFP(More)
Exocytosis of specialized endothelial cell secretory organelles, Weibel-Palade bodies (WPBs), is thought to play an important role in regulating hemostasis and intravascular inflammation. The major WPB core proteins are Von Willebrand factor (VWF) and its propolypeptide (Proregion), constituting more than 95% of the content. Although the composition of the(More)
Endothelial cells are reported to contain several distinct populations of regulated secretory organelles, including Weibel-Palade bodies (WPBs), the tissue plasminogen activator (tPA) organelle, and the type-2 chemokine-containing organelle. We show that the tPA and type-2 organelles in human endothelial cells represent a single compartment primarily(More)
The time course for cell surface loss of von Willebrand factor (VWF) and the propolypeptide of VWF (proregion) following exocytosis of individual Weibel-Palade bodies (WPBs) from single human endothelial cells was analyzed. Chimeras of enhanced green fluorescent protein (EGFP) and full-length pre-pro-VWF (VWF-EGFP) or the VWF propolypeptide (proregion-EGFP)(More)
Proteins secreted from Weibel-Palade bodies (WPBs) play important roles in regulating inflammatory and hemostatic responses. Inflammation is associated with the extracellular acidification of tissues and blood, conditions that can alter the behavior of secreted proteins. The effect of extracellular pH (pH(o)) on the release of von Willebrand factor (VWF),(More)
Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs. siRNA(More)
Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In(More)
BACKGROUND Weibel-Palade bodies (WPB) are endothelial cell (EC) specific secretory organelles containing Von Willebrand factor (VWF). The temperature-dependence of Ca(2+)-driven WPB exocytosis is not known, although indirect evidence suggests that WPB exocytosis may occur at very low temperatures. Here we quantitatively analyse the temperature-dependence of(More)
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine(More)
  • 1