Laura K Donovan

Learn More
The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated,(More)
Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a(More)
BACKGROUND/AIM While neuron-glia 2 (NG2) is well-characterized in the developing brain and in adult high-grade gliomas, little is known about NG2 expression in paediatric brain tumors. Here, NG2 expression was examined in a range of paediatric brain tumors. MATERIALS AND METHODS A retrospective immunohistopathological analysis of 57 paediatric brain tumor(More)
The cancer stem cell (CSC) marker CD133 is widely expressed in gliomas and employed mostly by use of the CD133/1 antibody which binds the extracellular glycosylated AC133 epitope. CD133 recognition may, however, be affected by its glycosylation pattern and oxygen tension. The present study investigates the effect of(More)
The CD133 glycoprotein is a controversial cancer stem cell marker in the field of neuro-oncology, based largely on the now considerable experimental evidence for the existence of both CD133+ve and CD133-ve populations as tumour-initiating cells. It is thought that decreasing oxygen tension enhances the complex regulation and phenotype of CD133 in glioma. In(More)
Few studies on the biologic and molecular properties of pediatric glioblastoma have been performed. Until now, differential genomic analysis of CD133(+)ve and CD133(-)ve fractions has not been described in pediatric glioma. We hypothesize not only that the presence of CD133 could be the source of tumor resistance but also that maintenance of this molecule(More)
We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to(More)
  • 1