Laura J. Juszczak

Learn More
Molecular dynamics (MD), coupled with fluorescence data for charged dipeptides of tryptophanyl glutamic acid (Trp-Glu), reveal a detailed picture of how specific conformation affects fluorescence. Fluorescence emission spectra and time-resolved emission measurements have been collected for all four charged species. MD simulations 20 to 30 ns in length have(More)
Tryptophyl glycine (TrpGly) and glycyl tryptophan (GlyTrp) dipeptides at pH 5.5 and pH 9.3 show a pattern of fluorescence emission shifts with the TrpGly zwitterion emission solely blue shifted. This pattern is matched by shifts in the UV resonance Raman (UVRR) W10 band position and the W7 Fermi doublet band ratio. Ab initio calculations show that the 1340(More)
Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of(More)
  • 1