Learn More
The identification of lung tumor-initiating cells and associated markers may be useful for optimization of therapeutic approaches and for predictive and prognostic information in lung cancer patients. CD133, a surface glycoprotein linked to organ-specific stem cells, was described as a marker of cancer-initiating cells in different tumor types. Here, we(More)
Mutations in certain genes that regulate the cell cycle, such as p16 and p53, are frequently found in human cancers. However, tumor-specific mutations are uncommon in genes encoding cyclin E and the CDK inhibitor p27Kip1, two cell-cycle regulators that are also thought to contribute to tumor progression. It is now known that levels of both cyclin E and p27(More)
Stable transfection of human ovarian carcinoma cells with survivin cDNA caused a four- to sixfold increase in cell resistance to taxotere and taxol (two-sided Student's t test, p < 0.05), with a concomitant reduction in the apoptotic response to taxol, but did not affect cell sensitivity to cisplatin or oxaliplatin. Such findings were indirectly supported(More)
Mitogen-activated protein kinases (MAPK) are involved in a complex network which regulates a variety of cellular processes including proliferation, survival and death. The molecular characterization of the pathway has shown aberrant activation in several human tumors, due to the deregulation of receptor tyrosine kinases or to mutations of pathway(More)
Multinuclear platinum compounds have been designed to circumvent the cellular resistance to conventional platinum-based drugs. In an attempt to examine the cellular basis of the preclinical antitumor efficacy of a novel multinuclear platinum compound (BBR 3464) in the treatment of cisplatin-resistant tumors, we have performed a comparative study of(More)
The plasma membrane enzyme gamma-glutamyltransferase (GGT) is regarded as critical for the maintenance of intracellular levels of glutathione (GSH). GGT expression has been implicated in drug resistance through elevation of intracellular GSH. The dependence of intracellular GSH on GGT expression was not conclusively ascertained. The present study was(More)
Drug resistance of tumor cells is recognized as the primary cause of failure of chemotherapeutic treatment of most human tumors. Although pharmacological factors including inadequate drug concentration at the tumor site can contribute to clinical resistance, cellular factors play a major role in chemoresistance of several tumors. Although manifestations of(More)
The deregulation of oncogenic signaling pathways which provide survival advantages to tumor cells is mediated by multiple cellular networks. Among them, the PI3K-Akt-mTOR axis, in particular the serine/threonine kinase Akt, is recognized as a key player. The kinase is hyperactivated due to a variety of mechanisms including loss of PTEN, mutations in the(More)
Pt compounds still represent the mainstay of the treatment of ovarian carcinoma. The aim of the present study was to investigate the molecular bases of resistance to Pt drugs using an oxaliplatin-resistant ovarian carcinoma cell model IGROV-1/OHP. These cells exhibited high levels of resistance to oxaliplatin, cross-resistance to cisplatin and topotecan and(More)
Platinum drugs are widely used in antitumour therapy and are a cornerstone of the treatment of different solid tumours. The pharmacological interest of cisplatin has led to the design of many analogues to broaden the spectrum of activity, reduce side effects, and overcome resistance. Although the cis configuration was initially identified as the only active(More)