Laura F. Michael

Learn More
The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified(More)
We characterize the ability of the liver X receptor (LXRalpha [NR1H3] and LXRbeta [NR1H2]) agonist, T0901317, to activate the farnesoid X receptor (FXR [NR4H4]). Although T0901317 is a much more potent activator of LXR than FXR, this ligand actually activates FXR more potently than a natural bile acid FXR ligand, chenodeoxycholic acid. Thus, the FXR(More)
The farnesoid X receptor (FXR; NR1H4) is a nuclear hormone receptor that functions as the bile acid receptor. In addition to the critical role FXR plays in bile acid metabolism and transport, it regulates a variety of genes important in lipoprotein metabolism. We demonstrate that FXR also plays a role in carbohydrate metabolism via regulation of(More)
The farnesoid X receptor (FXR, NR1H4) is a bile acid-responsive nuclear receptor that plays critical roles in the transcriptional regulation genes involved in cholesterol, bile acid, triglyceride, and carbohydrate metabolism. By microarray analysis of hepatic genes from female Zucker diabetic fatty (ZDF) rats treated with the FXR agonist GW4064, we have(More)
Control of plasma cholesterol levels is a major therapeutic strategy for management of coronary artery disease (CAD). Although reducing LDL cholesterol (LDL-c) levels decreases morbidity and mortality, this therapeutic intervention only translates into a 25-40% reduction in cardiovascular events. Epidemiological studies have shown that a high LDL-c level is(More)
Fenofibrate is clinically successful in treating hypertriglyceridemia and mixed hyperlipidemia presumably through peroxisome proliferator-activated receptor alpha (PPARalpha)-dependent induction of genes that control fatty acid beta-oxidation. Lipid homeostasis and cholesterol metabolism also are regulated by the nuclear oxysterol receptors, liver X(More)
BACKGROUND Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of(More)
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been shown to play an important role in energy metabolism by coordinating transcriptional programs involved in mitochondrial biogenesis, adaptive thermogenesis, gluconeogenesis, and fatty acid oxidation. PGC-1alpha also plays a crucial role in cholesterol metabolism by(More)
The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the(More)
Liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Two LXRs (LXRalpha and LXRbeta) were initially characterized as orphan members of this superfamily with disparate patterns of tissue expression. These two receptors later were recognized as sterol-responsive with the ability to(More)