Laura E. Kilpatrick

Learn More
IL-17 plays an important role in autoimmunity, promoting autoimmunity, inflammation and invasion in multiple sclerosis, rheumatoid arthritis and type I diabetes. The role of IL-17 in cancer is unclear, however, as there are few studies examining IL-17 protein expression in cancer. We therefore examined IL-17 protein expression in human breast cancer and(More)
In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor(More)
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of β-arrestin adaptors(More)
We characterized a group of acidic proteins of bovine chromaffin granules with an antiserum raised against a protein described by Rosa and Zanini [Eur. J. Cell Biol. 31, 94-98 (1983)] in pituitary gland. In adrenal medulla the proteins reacting with this antiserum are confined to chromaffin granules. Their largest component has a Mr of 86,000 and a pI of(More)
The matrix of the chromaffin granule contains a family of acidic proteins, collectively known as the chromogranins. It has been suggested that this family results from protease action on the major component, chromogranin A. Evidence for this has now been obtained from in vitro translation of adrenal medullary messenger RNA and immunoprecipitation of(More)
G protein-coupled receptors control a wide range of physiological processes and are the target for many clinically used drugs. Understanding the way in which receptors bind agonists and antagonists, their organisation in the membrane and their regulation after agonist binding are important properties which are key to developing new drugs. One way to achieve(More)
The affinity of G protein-coupled receptors (GPCRs) for particular ligands is altered by allosteric regulation with other proteins, for example signaling partners such as G proteins or β-arrestins, or multimeric receptor complexes. Studying the ways in which such interactions modulate pharmacology requires techniques that report these events at the(More)
The ability of G protein-coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-talk or because dimerization may often be transient in nature. Here we develop a system to isolate the(More)
Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. Here we have used a novel stoichiometric protein-labeling method to generate a fluorescent variant of VEGF (VEGF165a-TMR) labeled on a single cysteine within each protomer of the antiparallel VEGF homodimer. VEGF165a-TMR has then been used in conjunction with full length(More)
The ability of G protein–coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-talk or because dimerization may often be transient in nature. Here we develop a system to isolate the(More)
  • 1