Learn More
Little is known about how the initial endothelial plexus is remodelled into a mature and functioning vascular network. Studying postnatal remodelling of the retina vasculature, we show that a critical step in vascular maturation, namely pericyte recruitment, proceeds by outmigration of cells positive for (alpha)-smooth muscle actin from arterioles and that(More)
It has become evident that we cannot understand tumour growth without considering components of the stromal microenvironment, such as the vasculature. At the same time, the tumour phenotype determines the nature of the tumour vasculature. Much research is now devoted to determining the impact of angiogenesis on tumour development and progression, and the(More)
In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is(More)
Increased expression of vascular endothelial growth factor (VEGF) has been associated with increased lymph node metastases. The aim of this work was to determine whether VEGF-induced hyperpermeability affects peritumor interstitial convection and lymphatic drain, thus linking this growth factor with lymphatic function. Noninvasive imaging of lymphatic(More)
The vascular endothelial growth factor (VEGF)-related factor, placental growth factor (PlGF),has been shown recently to play an important role in pathological VEGF-driven angiogenesis. In this study, we examine the effects of mPlGF/PlGF-2 overexpression in tumors grown from glioma cells containing a tetracycline-regulated mPlGF cDNA. Overexpression of mPlGF(More)
Anti-VEGF pathway therapies primarily target immature blood vessels in tumors. However, emerging approaches to combine with targeted therapies impacting the later stages of remodeling and vessel maturation are expected to improve clinical efficacy by expanding the target vessel population. The angiopoietin/Tie ligand/receptor system is a prototypic(More)
Small molecule inhibitors of endothelial cell specific tyrosine kinases are currently under investigation as potential means to block tumor angiogenesis. We have investigated the utility of blocking Tie-2 signaling in endothelial cells as a potential anti-angiogenic strategy. We have found that interruption of Tie-2 signaling either via RNAi or(More)
It has become clear that the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is central for promoting both tumor and tumor stroma and is therefore a major target for anticancer drug development. First- and second-generation rapalogs (prototypical mTOR inhibitors) have shown promise but, due to the complex nature of mTOR(More)
Macrophages have a critical function in the recognition and engulfment of dead cells. In some settings, macrophages also actively signal programmed cell death. Here we show that during developmentally scheduled vascular regression, resident macrophages are an obligatory participant in a signaling switch that favors death over survival. This switch occurs(More)
Features that distinguish tumor vasculatures from normal blood vessels are sought to enable the destruction of preformed tumor vessels. We show that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells. These immature vessels are selectively(More)