Learn More
Gamma oscillations are thought to transiently link distributed cell assemblies that are processing related information, a function that is probably important for network processes such as perception, attentional selection and memory. This 'binding' mechanism requires that spatially distributed cells fire together with millisecond range precision; however,(More)
Electrophysiological recordings in animals, including humans, are modulated by oscillatory activities in several frequency bands. Little is known about how oscillations in various frequency bands interact. Recent findings from the human neocortex show that the power of fast gamma oscillations (30-150Hz) is modulated by the phase of slower theta oscillations(More)
Hippocampal population bursts ("sharp wave-ripples") occur during rest and slow-wave sleep and are thought to be important for memory consolidation. The cellular mechanisms involved are incompletely understood. Here we investigated the cellular mechanisms underlying the initiation of sharp waves using a hippocampal slice model. To this end, we used a(More)
Sharp waves (SPWs) are thought to play a major role in intrinsic hippocampal operations during states in which subcortical and cortical inputs to hippocampus are reduced. This study describes evidence that such activity occurs spontaneously in appropriately prepared rat hippocampal slices. Irregular waves, with an average frequency of approximately 4 Hz,(More)
Progressive cognitive deficits that emerge with aging are a result of complex interactions of genetic and environmental factors. Whereas much has been learned about the genetic underpinnings of these disorders, the nature of "acquired" contributing factors, and the mechanisms by which they promote progressive learning and memory dysfunction, remain largely(More)
Memory interference is a common cause of forgetting. Interference is a byproduct of the need to balance the formation of well-differentiated representations against the ability to retrieve memories from cues that are not identical to the original experience. How the brain accomplishes this has remained elusive. Here we review how insights can be gained from(More)
The hippocampus, a structure required for many types of memory, connects to the medial prefrontal cortex, an area that helps direct neuronal information streams during intentional behaviors. Increasing evidence suggests that oscillations regulate communication between these two regions. Theta rhythms may facilitate hippocampal inputs to the medial(More)
Accumulating evidence points to cortical oscillations as a mechanism for mediating interactions among functionally specialized neurons in distributed brain circuits. A brain function that may use such interactions is declarative memory--that is, memory that can be consciously recalled, such as episodes and facts. Declarative memory is enabled by circuits in(More)
CA1 cells receive direct input from space-responsive cells in medial entorhinal cortex (MEC), such as grid cells, as well as more nonspatial cells in lateral entorhinal cortex (LEC). Because MEC projects preferentially to the proximal part of the CA1, bordering CA2, whereas LEC innervates only the distal part, bordering subiculum, we asked if spatial tuning(More)
Sharp waves (SPWs) occur in the hippocampal EEG during behaviours such as alert immobility and slow-wave sleep. Despite their widespread occurrence across brain regions and mammalian species, the functional importance of SPWs remains unknown. Experiments in the present study indicate that long-term potentiation (LTP) is significantly impaired in slices,(More)