Learn More
Targeting large transmembrane molecules, including receptor tyrosine kinases, is a major pharmacological challenge. Specific oligonucleotide ligands (aptamers) can be generated for a variety of targets through the iterative evolution of a random pool of sequences (SELEX). Nuclease-resistant aptamers that recognize the human receptor tyrosine kinase RET were(More)
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S.(More)
Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in(More)
The glial-cell-line-derived neurotrophic factor (GDNF) ligand activates the Ret receptor through the assembly of a multiprotein complex, including the GDNF family receptor alpha1 (GFRalpha1) molecule. Given the neuroprotective role of GDNF, there is an obvious need to precisely identify the structural regions engaged in direct interactions between the three(More)
Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and therefore are subject to intensive investigation. Aptamers are small, highly structured nucleic acid molecules, isolated from(More)
The hope of success of therapeutic interventions largely relies on the possibility to distinguish between even close tumor types with high accuracy. Indeed, in the last ten years a major challenge to predict the responsiveness to a given therapeutic plan has been the identification of tumor specific signatures, with the aim to reduce the frequency of(More)
Axl is a tyrosine kinase receptor that was first identified as a transforming gene in human myeloid leukemia. Recent converging evidence suggests its implication in cancer progression and invasion for several solid tumors, including lung, breast, brain, thyroid, and pancreas. In the last decade, Axl has thus become an attractive target for therapeutic(More)
While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted(More)
Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and are therefore subject to intensive investigation. Aptamers are small nucleic acid molecules, isolated from combinatorial(More)
Aptamers are short, structured, single-stranded RNA or DNA ligands that bind with high affinity to their target molecules, which range from small chemicals to large cell-surface and transmembrane proteins. Aptamers are now emerging as promising molecules to target specific cancer epitopes in clinical diagnosis and therapy. Furthermore, because of their high(More)