Laura B Metz

Learn More
Nitrous oxide (N(2)O, also known as laughing gas) and volatile anesthetics (VAs), the original and still most widely used general anesthetics, produce anesthesia by ill-defined mechanisms. Electrophysiological experiments in vertebrate neurons have suggested that N(2)O and VAs may act by distinct mechanisms; N(2)O antagonizes the N-methyl-d-aspartate (NMDA)(More)
BACKGROUND Volatile general anesthetics inhibit neurotransmitter release by a mechanism not fully understood. Genetic evidence in Caenorhabditis elegans has shown that a major mechanism of action of volatile anesthetics acting at clinical concentrations in this animal is presynaptic inhibition of neurotransmission. To define additional components of this(More)
BACKGROUND Electrophysiologic experiments in rodents have found that nitrous oxide and xenon inhibit N-methyl-D-aspartate (NMDA)-type glutamate receptors. These findings led to the hypothesis that xenon and nitrous oxide along with ketamine form a class of anesthetics with the identical mechanism, NMDA receptor antagonism. Here, the authors ask in(More)
To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild(More)
BACKGROUND Volatile general anesthetics inhibit neurotransmitter release by an unknown mechanism. A mutation in the presynaptic soluble NSF attachment protein receptor (SNARE) protein syntaxin 1A was previously shown to antagonize the anesthetic isoflurane in Caenorhabditis elegans. The mechanism underlying this antagonism may identify presynaptic(More)
Volatile anesthetics (VAs) disrupt nervous system function by an ill-defined mechanism with no known specific antagonists. During the course of characterizing the response of the nematode C. elegans to VAs, we discovered that a C. elegans pheromone antagonizes the VA halothane. Acute exposure to pheromone rendered wild-type C. elegans resistant to clinical(More)
  • 1