Learn More
Research on low-power scan testing has been focused on the shift mode, with little or no consideration given to the capture mode power. However, high switching activity when capturing a test response can cause excessive IR drop, resulting in significant yield loss. This paper addresses this problem with a novel low-capture-power X-filling method by(More)
This paper describes the VirtualScan technology for scan test cost reduction. Scan chains in a VirtualScan circuit are split into shorter ones and the gap between external scan ports and internal scan chains are bridged with a broadcaster and a compactor. Test patterns for a VirtualScan circuit are generated directly by one-pass VirtualScan ATPG, in which(More)
X-filling is preferred for low-capture-power scan test generation, since it reduces IR-drop-induced yield loss without the need of any circuit modification. However, the effectiveness of previous X-filling methods suffers from lack of guidance in selecting targets and values for X-filling. This paper addresses this problem with a highly-guided X-filling(More)
This work proposes a new per-test fault diagnosis method based on the X-fault model. The X-fault model represents all possible behaviors of a physical defect or defects in a gate and/or on its fanout branches by using different X symbols on the fanout branches. A novel technique is proposed for analyzing the relation between observed and simulated responses(More)