Laszlo Forro

Learn More
The cellular toxicity of carbon-based nanomaterials was studied as a function of their aspect ratio and surface chemistry. These structures were multiwalled carbon nanotubes, carbon nanofibers, and carbon nanoparticles. Their toxicity was tested in vitro on lung tumor cells. Our work clearly indicated that these materials are toxic while the hazardous(More)
NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction.(More)
We have determined the mechanical anisotropy of a single microtubule by simultaneously measuring the Young's and the shear moduli in vitro. This was achieved by elastically deforming the microtubule deposited on a substrate tailored by electron-beam lithography with a tip of an atomic force microscope. The shear modulus is 2 orders of magnitude lower than(More)
During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of(More)
The seasonal dynamics in habitat characteristics of temporary freshwater pools were studied in relation to hydroperiod and geographical location for a set of 36 pristine pools in and around the Kiskunság National Park (Hungary). The pools were geographically distributed over three clusters and their hydroperiod varied from seven to more than 18 weeks.(More)
The pathological hallmarks of Alzheimer's disease (AD) consist of beta-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in(More)
Thermal position fluctuations of a colloidal particle in an optical trap are measured with microsecond resolution using back-focal-plane interferometry. The mean-square displacement <Delta(x)2(t)> and power spectral density are in excellent agreement with the theory for a Brownian particle in a harmonic potential that accounts for hydrodynamic memory(More)
Nanotubes present one of the most promising opportunities in nanotechnology with a plethora of applications in nanoelectronics, mechanical engineering, as well as in biomedical technology. Due to their structure and some physical properties, boron nitride (BN) nanotubes (BNNTs) possess several advantages over carbon nanotubes (CNTs), and they are now(More)
Nanocrystalline titanium dioxide (nanoTiO2) has been reported to generate reactive oxygen species (ROS) under UV illumination. In our studies, changes in mechanical properties of human skin fibroblasts, exposed to the oxidative stress induced in the presence of nanoTiO2 and UV light, were studied using atomic force microscopy (AFM). The exposure of cells to(More)
The search for the coexistence between superconductivity and other collective electronic states in many instances promoted the discovery of novel states of matter. The manner in which the different types of electronic order combine remains an ongoing puzzle. 1T-TaS(2) is a layered material, and the only transition-metal dichalcogenide (TMD) known to develop(More)