Lasse Karvonen

Learn More
Michael Gehl,* Ricky Gibson, Joshua Hendrickson, Andrew Homyk, Antti Säynätjoki, Tapani Alasaarela, Lasse Karvonen, Ari Tervonen, Seppo Honkanen, Sander Zandbergen, Benjamin C. Richards, J. D. Olitzky, Axel Scherer, Galina Khitrova, Hyatt M. Gibbs, Ju-Young Kim, and Yong-Hee Lee College of Optical Sciences, University of Arizona, 1630 East University(More)
Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP,(More)
Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe(More)
We use second-harmonic generation (SHG) with focused vector beams to investigate individual vertically aligned GaAs nanowires. Our results provide direct evidence that SHG from oriented nanowires is mainly driven by the longitudinal field along the nanowire growth axis. Consequently, focused radial polarization provides a superior tool to characterize such(More)
Single- and few-layer graphene was studied with simultaneous third-harmonic and multiphoton-absorption-excited fluorescence microscopy using a compact 1.55 μm mode-locked fiber laser source. Strong third-harmonic generation (THG) and multiphoton-absorption-excited fluorescence (MAEF) signals were observed with high contrast over the signal from the(More)
We demonstrate low-loss silicon slot waveguides patterned with 248 nm deep-UV lithography and filled with atomic layer deposited aluminum oxide. Propagation losses less than 5 dB/cm are achieved with the waveguides. The devices are fabricated using low-temperature CMOS compatible processes. We also demonstrate simple, compact and efficient strip-to-slot(More)
Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding(More)
Effect of angled sidewalls on the filling and properties of silicon slot waveguides is discussed. We demonstrate complete filling of slot waveguide structures with oxide material systems using the atomic layer deposition technique and discuss use of various slot filling materials. Properties of the optical modes in angled-sidewall slot waveguides are(More)
Herein we characterize and experimentally demonstrate a new type of a horizontal slot waveguide structure for remarkably enhanced Raman scattering detection in nanometer-scale void channels. As the measurement sensitivity is one of the key limiting factors in nanofluidic detection, it is essential to search advanced solutions for such detection. Combining(More)
We demonstrate a new method for accessing the broad-bandwidth polarization-independent operation of a microring resonator based on the standard photonic nanostrip waveguides. The method employs the selective application of atomic layer deposition to form highly uniform TiO(2) overlayers with the specific dispersion properties. The wide operation window is(More)