Lasantha Korala

  • Citations Per Year
Learn More
Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) nonradiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy(More)
A method of fabricating sol-gel quantum dot (QD) films is demonstrated, and their optical, structural and electrical properties are evaluated. The CdSe(ZnS) xerogel films remain quantum confined, yet are highly conductive (10(-3) S cm(-1)). This approach provides a pathway for the exploitation of QD gels in optoelectronic applications.
CdSe(ZnS) core(shell) aerogels were prepared from the assembly of quantum dots into mesoporous colloidal networks. The sol-gel method produces inorganic particle interfaces with low resistance to electrical transport while maintaining quantum-confinement. The photoelectrochemical properties of aerogels and their composites with poly(3-hexylthiophene) are(More)
Poor charge transport in Cu2ZnSnS4 (CZTS) nanocrystal (NC) thin films presents a great challenge in the fabrication of solar cells without postannealing treatments. We introduce a novel approach to facilitate the charge carrier hopping between CZTS NCs by growing a stoichiometric Cu2Se shell that can be oxidized to form a conductive Cu2-xSe phase when(More)
Transparent CdSe(ZnS) sol-gel materials have potential uses in optoelectronic applications such as light emitting diodes (LEDs) due to their strong luminescence properties and the potential for charge transport through the prewired nanocrystal (NC) network of the gel. However, typical syntheses of metal chalcogenide gels yield materials with poor(More)
  • 1