Lars Wågberg

Learn More
A new type of nanocellulosic material has been prepared by high-pressure homogenization of carboxymethylated cellulose fibers followed by ultrasonication and centrifugation. This material had a cylindrical cross-section as shown by transmission electron microscopy with a diameter of 5-15 nm and a length of up to 1 microm. Calculations, using the(More)
A systematic study of the degree of molecular ordering and swelling of different nanocellulose model films has been conducted. Crystalline cellulose II surfaces were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water or by using the Langmuir-Schaefer (LS) technique. Amorphous cellulose(More)
The possibility of forming self-organized films using only charge-stabilized dispersions of cellulose I nanofibrils with opposite charges is presented, that is, the multilayers were composed solely of anionically and cationically modified microfibrillated cellulose (MFC) with a low degree of substitution. The build-up behavior and the properties of the(More)
The build-up of multilayers constructed from polyallylamine hydrochloride (PAH) and polyacrylic acid (PAA) under different pH conditions was continuously monitored using the quartz crystal microbalance with dissipation. The adsorbed amount of polymer as well as the amount of coupled water was determined. Furthermore, from dissipation measurements, it was(More)
The effects of fungal cellulases on model cellulose films were studied using a high-resolution quartz crystal microbalance (QCM) sensitive to minute changes of the nanometer thick model cellulose films. It was found that endoglucanases not only produce new end groups but also cause a swelling of the cellulose film. The cellobiohydrolases degraded the films(More)
Department of Materials Science and Eng California 94305, USA. E-mail: yicui@stanf Department of Chemical Engineering, St 94305, USA Department of Chemistry, Stanford Univers Fibre and Polymer Technology, KTH Royal 10044 Stockholm, Sweden. E-mail: wagberg Department of Applied Physics, Stanford Un Stanford Institute for Materials and Ener Laboratory, 2575(More)
Polyethyleneimine (PEI) and Microfibrillated cellulose (MFC) have been used to buildup polyelectrolyte multilayers (PEM) on silicone oxide and silicone oxynitride surfaces at different pH values and with different electrolyte and polyelectrolyte/colloid concentrations of the components. Consecutive adsorption on these surfaces was studied by in situ(More)
Adhesion measurements have been performed with thin cellulose films using continuum contact mechanics with application of the JKR theory. Three different cellulose surfaces were prepared, one crystalline and two surfaces with a lower degree of crystalline order. Adhesion between two cross-linked poly(dimethylsiloxane) (PDMS) caps, as well as the adhesion(More)
The interaction between cellulose surfaces is of fundamental interest in various natural and industrial systems. In this study, we describe the first direct measurements of an attractive van der Waals-type interaction between cellulose surfaces under aqueous conditions. An atomic force microscope, operating in colloidal probe mode, has been used to measure(More)
The preparation of multifunctional films and coatings from sustainable, low-cost raw materials has attracted considerable interest during the past decade. In this respect, cellulose-based products possess great promise due not only to the availability of large amounts of cellulose in nature but also to the new classes of nanosized and well-characterized(More)