Learn More
The pacemaker activity in the mammalian gut is responsible for generating anally propagating phasic contractions. The cellular basis for this intrinsic activity is unknown. The smooth muscle cells of the external muscle layers and the innervated cellular network of interstitial cells of Cajal, which is closely associated with the external muscle layers of(More)
Intracellular microelectrodes and organ bath techniques were used to study spontaneous cyclic electrical and mechanical activity in the rat colon. Electron microscopy and immunohistochemical studies showed two major populations of interstitial cells of Cajal (ICC): one associated with Auerbach's plexus (ICC-AP) and one with the submuscular plexus (ICC-SMP).(More)
Motility patterns and their structural basis were studied by video analysis, light and electron microscopy on the physiologically distended gut from normal and W/W(v) suckling mice and normal adult mice. Empty or diltiazem-relaxed intestine were used as references. In contrast to conventional primary aldehyde fixation, a brief primary fixation with osmic(More)
Interstitial cells of Cajal (ICC) were described a century ago as primitive neurons in the intestines. Through the years, ICC have been mistaken for neurons, glial cells, fibroblasts, smooth muscle cells, and macrophages. We identified ICC in the musculature of mouse small intestine by their characteristic morphology and topography, and we analysed the(More)
Coupling of smooth muscle cells is important for coordination of gastrointestinal motility. Small structures called peg-and-socket junctions (PSJs) have been found between muscle cells and may play a role in electrical coupling due to extracellular potassium accumulation in the narrow cleft between the muscle cells. A model was developed in which an(More)
This review is a portrayal of the evolution of ideas involving the interstitial cells of Cajal in changing disguises as dull fibroblasts, not very exciting Schwann cells, or perhaps quite important, though primitive neurons. However, today unmasked (we believe), they reveal themselves as myoid cells, a role that, judging by current interest, is far more(More)
To reveal the unique intrinsic properties of interstitial cells of Cajal (ICC), morphological and electrophysiological characteristics of isolated ICC from the adult mouse small intestine were investigated and compared with those of smooth muscle cells. All typical ultrastructural features of in situ ICC were evident in isolated ICC throughout the isolation(More)
The small intestine of W/Wv mice lacks both the network of interstitial cells of Cajal (ICC), associated with Auerbach's plexus, and pacemaker activity, i.e., it does not generate slow-wave-type action potentials. The W/Wv muscle preparations showed a wide variety of electrical activities, ranging from total quiescence to generation of action potentials at(More)
Interstitial cells of Cajal (ICC) appear to be involved in the regulation of intestinal motility, probably as pacemaker cells. We investigated the complex organization of ICC associated with Auerbach's plexus of guinea-pig small intestine in the scanning electron microscope. The plexus was exposed by microdissection of zinc iodide/osmic acid stained tissue.(More)
Intestinal motor patterns are not well developed in premature infants. Similarly, in neonatal mice, irregular motor patterns were observed. Pacemaker cells, identified in the small intestine as interstitial cells of Cajal (ICCs) associated with Auerbach's plexus (ICC-APs), contribute to the generation of peristaltic movements. The objective of the present(More)