Learn More
Intrinsic localized modes (ILMs) have been observed in micromechanical cantilever arrays, and their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been studied. The micromechanical array is fabricated in a 300 nm thick silicon-nitride film on a silicon substrate, and consists of up to 248 cantilevers of two(More)
In this work, we present a mechanical example of an experimental realization of a stability reversal between on-site and intersite centered localized modes. A corresponding realization of a vanishing of the Peierls-Nabarro barrier allows for an experimentally observed enhanced mobility of the localized modes near the reversal point. These features are(More)
This work focuses on the production of both stationary and traveling intrinsic localized modes (ILMs), also known as discrete breathers, in two closely related electrical lattices; we demonstrate experimentally that the interplay between these two ILM types can be utilized for the purpose of spatial control. We describe a novel mechanism that is responsible(More)
We explore both analytically and numerically an ensemble of coupled phase oscillators governed by a Kuramoto-type system of differential equations. However, we have included the effects of time delay (due to finite signal-propagation speeds) and network plasticity (via dynamic coupling constants) inspired by the Hebbian learning rule in neuroscience. When(More)
The conditions for the propagation of modulated waves on a system of two coupled discrete nonlinear LC transmission lines with negative nonlinear resistance are examined, each line of the network containing a finite number of cells. Our theoretical analysis shows that the telegrapher equations of the electrical transmission line can be reduced to a set of(More)
We investigate the role of the learning rate in a Kuramoto Model of coupled phase oscillators in which the coupling coefficients dynamically vary according to a Hebbian learning rule. According to the Hebbian theory, a synapse between two neurons is strengthened if they are simultaneously coactive. Two stable synchronized clusters in antiphase emerge when(More)
The emergence of very stable traveling intrinsic localized modes (ILMs) locked to a uniform driver is demonstrated in a discrete electrical transmission line. The speed of these traveling ILMs is tunable by the driver amplitude and frequency. It is found to be quite sensitive to the ratio of intersite to on-site nonlinearity. The number of traveling ILMs(More)
We show experimentally and numerically that an intrinsic localized mode (ILM) can be stably produced (and experimentally observed) via subharmonic, spatially homogeneous driving in the context of a nonlinear electrical lattice. The precise nonlinear spatial response of the system has been seen to depend on the relative location in frequency between the(More)
We report the observation of spontaneous localization of energy in two spatial dimensions in the context of nonlinear electrical lattices. Both stationary and moving self-localized modes were generated experimentally and theoretically in a family of two-dimensional square as well as honeycomb lattices composed of 6 × 6 elements. Specifically, we find(More)
—Intrinsic localized modes (ILMs) have been generated and characterized in two-dimensional nonlinear electrical lattices which were driven by a spatially-uniform voltage signal. These ILMs were found to be either stationary or mobile, depending on the details of the lattice unit-cell, as had already been reported in one-dimensional lattices; however, the(More)