Lars-Peter Erwig

Learn More
The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to escape destruction by the host immune system. Using mutant strains that are defective in cell surface glycosylation, cell wall protein synthesis, and yeast-hypha morphogenesis, we have investigated three important aspects of C. albicans innate immune(More)
Cells undergo apoptosis in development, tissue homeostasis, and disease and are subsequently cleared by professional and nonprofessional phagocytes. There is now overwhelming evidence that phagocyte function is profoundly altered following apoptotic cell uptake, with consequences for the ensuing innate and adaptive immune response. Pathogens and tumors(More)
Phagocytic clearance of apoptotic cells may be considered to consist of four distinct steps: accumulation of phagocytes at the site where apoptotic cells are located; recognition of dying cells through a number of bridge molecules and receptors; engulfment by a unique uptake process; and processing of engulfed cells within phagocytes. Here, we will discuss(More)
Macrophage infiltration is a common feature of renal disease and their presence has been synonymous with tissue damage and progressive renal failure. More recently work has focused on the heterogeneity of macrophage activation and in particular their ability to curtail inflammation and restore normal function. This has led to the view that it is macrophage(More)
Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall(More)
The induction of pathogenic immune responses may be dependent on the immune system receiving 'danger' signals resulting from tissue damage, rather than tolerogenic stimuli associated with normal cell turnover. The aim was to test this hypothesis by comparing the effects of the uptake of necrotic and apoptotic cells on the ability of antigen-presenting cells(More)
Deletion of apoptotic cells from tissues involves their phagocytosis by macrophages, dendritic cells, and tissue cells. Although much attention has been focused on the participating ligands, receptors, and mechanisms of uptake, little is known of the disposition of the ingested cell within the phagosome. Here we show that uptake of apoptotic cells by(More)
The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to inhibit effective destruction by host phagocytes. Using live cell video microscopy, we show here for the first time that C. albicans inhibits cell division in macrophages undergoing mitosis. Inhibition of macrophage cell division is dependent on the(More)
This study examined the properties and responsiveness to cytokines of macrophages purified from normal and nephritic glomeruli to ascertain whether macrophages activated in vivo develop programmed unresponsiveness to cytokines as do bone marrow-derived macrophages in vitro when activated by interferon-gamma (IFN-gamma), tumor necrosis factor (TNF),(More)
This review describes recent advances in macrophage biology in the context of renal inflammation. It highlights the importance of the activated macrophage for the progression and resolution of renal disease, and discusses recent and potential future approaches to modify macrophage function selectively within the kidney to activate them specifically to(More)