Lars P. van der Heide

Learn More
Diabetes mellitus is associated with moderate cognitive deficits and neurophysiological and structural changes in the brain, a condition that may be referred to as diabetic encephalopathy. Diabetes increases the risk of dementia, particularly in the elderly. The emerging view is that the diabetic brain features many symptoms that are best described as(More)
Insulin is best known for its role in peripheral glucose homeostasis. Less studied, but not less important, is its role in the central nervous system. Insulin and its receptor are located in the central nervous system and are both implicated in neuronal survival and synaptic plasticity. Interestingly, over the past few years it has become evident that the(More)
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the(More)
The LIM homeodomain transcription factor Lmx1a is a very potent inducer of stem cells towards dopaminergic neurons. Despite several studies on the function of this gene, the exact in vivo role of Lmx1a in mesodiencephalic dopamine (mdDA) neuronal specification is still not understood. To analyse the genes functioning downstream of Lmx1a, we performed(More)
Recent developments in molecular programming of mesodiencephalic dopaminergic (mdDA) neurons have led to the identification of many transcription factors playing a role in mdDA specification. LIM homeodomain transcription factor Lmx1a is essential for chick mdDA development, and for the efficient differentiation of ES-cells towards a dopaminergic phenotype.(More)
Insulin signalling is well studied in peripheral tissue, but not in neuronal tissue. To gain more insight into neuronal insulin signalling we examined protein kinase B (PKB) and extracellular regulated kinase 1 and 2 (ERK1/2) regulation in serum-deprived Neuro2a cells. Insulin phosphorylated PKB in a dose-dependent manner but reduced phosphorylation of(More)
The isthmic organizer (IsO) is a signaling center that specifies the correct and distinct embryonic development of the dopaminergic midbrain and serotonergic hindbrain. The IsO is a linear boundary between the two brain regions, emerging at around embryonic day 7-8 of murine embryonic development, that shapes its surroundings through the expression of(More)
BACKGROUND Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ) signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose) polymerase 1 (PARP-1) negatively influences(More)
  • 1