Learn More
Echoplanar functional magnetic resonance imaging was used to monitor activation changes of brain areas while subjects viewed apparent motion stimuli and while they were engaged in motion imagery. Human cortical areas MT (V5) and MST were the first areas of the 'dorsal' processing stream which responded with a clear increase in signal intensity to apparent(More)
The cortical integration of auditory and visual features is crucial for efficient object recognition. Previous studies have shown that audiovisual (AV) integration is affected by where and when auditory and visual features occur. However, because relatively little is known about the impact of what is integrated, we here investigated the impact of semantic(More)
Functional imaging has demonstrated the specific involvement of the human middle-temporal complex (hMT/V5+) during processing of moving stimuli. Some studies applied transcranial magnetic stimulation (TMS) to investigate the causal relevance of hMT/V5+ for motion perception. Although the studies used similar visual stimuli and TMS parameters, the critical(More)
Working memory (WM) capacity limitations and their neurophysiological correlates are of special relevance for the understanding of higher cognitive functions. Evidence from behavioral studies suggests that restricted attentional resources contribute to these capacity limitations. In an event-related functional magnetic resonance imaging (fMRI) study, we(More)
Patients with lesions in the primary visual cortex (V1) may show processing of visual stimuli presented in their field of cortical blindness even when they report being unaware of the stimuli. To elucidate the neuroanatomical basis of their residual visual functions, we used functional magnetic resonance imaging in two hemianopic patients, FS and GY. In the(More)
The spatio-temporal distribution of brain activity as revealed by non-invasive functional imaging helps to elucidate the neuronal encoding and processing strategies required by complex cognitive tasks. We investigated visual short-term memory for objects, places and conjunctions in humans using event-related time-resolved functional magnetic resonance(More)
During the perception of apparent motion, activity along the apparent motion trace has been found in the primary visual cortex. It has been hypothesized that this activity interferes with stimuli presented on the apparent motion trace ("motion masking"). We investigated whether this perceptual interference varies with regard to the trajectory of a moving(More)
Several regions in human temporal and frontal cortex are known to integrate visual and auditory object features. The processing of audio-visual (AV) associations in these regions has been found to be modulated by object familiarity. The aim of the present study was to explore training-induced plasticity in human cortical AV integration. We used functional(More)
Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human(More)
Functional magnetic resonance imaging (fMRI) and neuron electrophysiology (neurophysiology) are two well-established ways to measure brain activity. Even though the spatial and temporal resolution of these techniques is very different, both measurements show a high level of consistency, i.e., for mapping feature preferences of cortical areas. There are,(More)