Lars Lühl

  • Citations Per Year
Learn More
Three-dimensional micro-XRF is a recently developed microprobe which facilitates three-dimensional resolved chemical analyses with a resolution of around 20 mum. Arbitrary sites or sections of samples can be investigated without the need to section specimens physically. In this paper we demonstrate the use of the microprobe in combination with a cold(More)
Grazing incidence and grazing emission X-ray fluorescence spectroscopy (GI/GE-XRF) are techniques that enable nondestructive, quantitative analysis of elemental depth profiles with a resolution in the nanometer regime. A laboratory setup for soft X-ray GEXRF measurements is presented. Reasonable measurement times could be achieved by combining a highly(More)
A new approach for the nondestructive reconstruction of stratified systems with constant elemental composition but with varying chemical compounds has been developed. The procedure is based on depth scans with a confocal X-ray fluorescence setup at certain energies near absorption edges. These so-called marker energies, where XAFS signals of the involved(More)
The decorated black- and red-figured Athenian vases (sixth and fifth century BC) and the plain black-glazed ware represent a milestone in our material culture due to their aesthetic and technological value; the Attic black glaze is of particular interest since it is a highly resistant potash-alumino-silicate glass, colored by magnetite nanocrystals (<200(More)
A new approach for chemical speciation in stratified systems using 3D Micro-XAFS spectroscopy is developed by combining 3D Micro X-ray Fluorescence Spectroscopy (3D Micro-XRF) and conventional X-ray Absorption Fine Structure Spectroscopy (XAFS). A prominent field of application is stratified materials within which depth-resolved chemical speciation is(More)
A combination of 3D micro X-ray fluorescence spectroscopy (3D micro-XRF) and micro-XRF was utilized for the investigation of a small collection of highly heterogeneous, partly degraded Dead Sea Scroll parchment samples from known excavation sites. The quantitative combination of the two techniques proves to be suitable for the identification of reliable(More)
The recently developed 3D micro X-ray fluorescence spectroscopy (3D Micro-XRF) enables three-dimensional resolved, nondestructive investigation of elemental distribution in samples in the micrometer regime. Establishing a reliable quantification procedure is the precondition to render this spectroscopic method into a true analytical tool. One prominent(More)
  • 1