Lars Kotthoff

Learn More
WEKA is a widely used, open-source machine learning platform. Due to its intuitive interface, it is particularly popular with novice users. However, such users often find it hard to identify the best approach for their particular dataset among the many available. We describe the new version of Auto-WEKA, a system designed to help such users by automatically(More)
The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains(More)
In recent years, portfolio approaches to solving SAT problems and CSPs have become increasingly common. There are also a number of di erent encodings for representing CSPs as SAT instances. In this paper, we leverage advances in both SAT and CSP solving to present a novel hierarchical portfolio-based approach to CSP solving, which we call Proteus, that does(More)
Constraint modelling is widely recognised as a key bottleneck in applying constraint solving to a problem of interest. The CONJURE automated constraint modelling system addresses this problem by automatically refining constraint models from problem specifications written in the ESSENCE language. ESSENCE provides familiar mathematical concepts like sets,(More)
Machine learning is an established method of selecting algorithms to solve hard search problems. Despite this, to date no systematic comparison and evaluation of the different techniques has been performed and the performance of existing systems has not been critically compared with other approaches. We compare the performance of a large number of different(More)
Learning in the context of constraint solving is a technique by which previously unknown constraints are uncovered during search and used to speed up subsequent search. Recently, lazy learning, similar to a successful idea from satisfiability modulo theories solvers, has been shown to be an effective means of incorporating constraint learning into a solver.(More)
Machine learning is an established method of selecting algorithms to solve hard search problems. Despite this, to date no systematic comparison and evaluation of the different techniques has been performed and the performance of existing systems has not been critically compared to other approaches. We compare machine learning techniques for algorithm(More)