Learn More
Techniques and algorithms for efficient in-place conversion to and from standard and blocked matrix storage formats are described. Such functionality is required by numerical libraries that use different data layouts internally. Parallel algorithms and a software package for in-place matrix storage format conversion based on in-place matrix transposition(More)
Consider a house cleaning robot planning its activities for the day. Assume that the robot expects the human inhabitant to first dress, then have breakfast, and finally go out. Then, it should plan not to clean the bedroom while the human is dressing, and to clean the kitchen after the human has had breakfast. In general, robots operating in inhabited(More)
The minimal block storage Distributed Square Block Packed (DSBP) format for distributed memory computing on symmetric and triangular matrices is presented. Three algorithm variants (Basic, Static, and Dynamic) of the blocked right-looking Cholesky factorization are designed for the DSBP format, implemented, and evaluated. On our target machine, all variants(More)
We present three algorithms for Cholesky factorization using minimum block storage for a distributed memory (DM) environment. One of the distributed square block packed (SBP) format algorithms performs similar to ScaLAPACK PDPOTRF, and our algorithm with iteration overlapping typically outperforms it by 15–50% for small and medium sized matrices. By storing(More)
An autonomous robot using symbolic reasoning, sensing and acting in a real environment needs the ability to create and maintain the connection between symbols representing objects in the world and the corresponding perceptual representations given by its sensors. This connection has been named perceptual anchoring. In complex environments, anchoring is not(More)
— We consider an ecology of robots in which robots can help each other by offering information-producing func-tionalities. A functional configuration of this ecology is a way to allocate and connect functionalities among the participating robots. In general, different configurations can be used to solve the same task, depending on the current situation, and(More)