Learn More
Synaptic transmission of most vertebrate synapses is thought to be terminated by rapid transport of the neurotransmitter into presynaptic nerve terminals or neuroglia. L-Glutamate is the major excitatory transmitter in brain and its transport represents the mechanism by which it is removed from the synaptic cleft and kept below toxic levels. Here we use an(More)
Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole(More)
Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae, NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved(More)
BACKGROUND There has been an ongoing debate in the reproductive field about whether mammalian spermatozoa rely on glycolysis, oxidative phosphorylation or both for their energy production. Recent studies have proposed that human spermatozoa depend mainly on glucose for motility and fertilization but the mechanism behind an efficient glycolysis in human(More)
The mitochondrial DNA (mtDNA) of neural stem cells (NSCs) is vulnerable to oxidation damage. Subtle manipulations of the cellular redox state affect mtDNA integrity in addition to regulating the NSC differentiation lineage, suggesting a molecular link between mtDNA integrity and regulation of differentiation. Here we show that 8-oxoguanine DNA glycosylase(More)
Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the(More)
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond(More)
Primary neuronal cells used to model physiology are generally limited to embryonic tissue. However, embryonic tissue is not optimal as a model for age-related changes in physiology or late-onset disease. Successful culturing of neurons from adult animals, however, has been historically difficult, if not impossible. Here, we report methodology for routine(More)
The oxidation resistance gene 1 (OXR1) is crucial for protecting against oxidative stress; however, its molecular function is unknown. We employed RNA sequencing to examine the role of human OXR1 for genome wide transcription regulation. In total, in non-treated and hydrogen peroxide exposed HeLa cells, OXR1 depletion resulted in down-regulation of 554(More)
Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques(More)